Skip to main content

Phenomenological approach to fatigue life prediction under uniaxial loading

  • Chapter
Fatigue Damage, Crack Growth and Life Prediction

Abstract

Fatigue failure of metals due to repeated loads has been recognized for over a hundred years. In general, this phenomenon has attracted attention due to the advances in technology which mean that progressively more and more is demanded from machine parts in terms of speeds of operation and loads to be sustained. The required safety and /or reliability of modern engineering structures has also generated interest in this subject. Since Wöhler’s 1871 work on fatigue limit, the field of fatigue has been subdivided into a number of specific topics such as high- and low-cycle fatigue, accumulation of damage, fatigue of notched members, and the initiation, propagation and arrest of fatigue cracks. Each of these areas has developed on the basis of available experimental results. Studies have ranged from the microscopic dislocation mechanism to phenomenological material behaviour to full-scale structural testing and analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrow, J.D. (1965) Cyclic plastic strain energy and fatigue of metals, in Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Society for Testing and Materials, Philadelphia, PA, pp. 45–84.

    Chapter  Google Scholar 

  2. Wöhler, A. (1871) Tests to determine the forces acting on railway carriage axles and the capacity of resistance of the axles. Engineering, 11.

    Google Scholar 

  3. Basquin, O.H. (1910) The exponential law of endurance tests. Proc ASTM, 10 (II) 625–30.

    Google Scholar 

  4. Lefebvre, D. and Ellyin, F. (1984) Cyclic response and inelastic strain energy in low-cycle fatigue. Int. J. Fatigue, 6 (1), pp. 9–15.

    Article  Google Scholar 

  5. SAE Handbook (1978) Technical Report on Fatigue Properties, Section J-1099, Society of Automotive Engineers, Warrendale, PA.

    Google Scholar 

  6. Smith, K.N., Watson, P. and Topper, T.H. (1970) A stress-strain function for the fatigue of metals. J. Mater., 5, 767–78.

    Google Scholar 

  7. Manson, S.S. (1954) Behaviour of Materials Under Conditions of Thermal Stress, NACA TN-2933, National Advisory Committee for Aeronautics.

    Google Scholar 

  8. Coffin, L.F. (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME, 76, 931–50.

    Google Scholar 

  9. Landgraf, R.W. (1970) The resistance of metals to cyclic deformation, in Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, American Society for Testing and Materials, Philadelphia, PA, pp. 3–36.

    Chapter  Google Scholar 

  10. Dubuc, J. et al. (1970) Effect of mean stress and of mean strain in low-cycle fatigue of A-517 and A-201 steels. J. Engng. Mater. Technol., Trans. ASME, 92, 35–52.

    Google Scholar 

  11. Ellyin, F. (1985) Effect of tensile-mean-strain on plastic strain energy and cyclic response. J. Engng. Mater. Technol, Trans. ASME, 107, 119–25.

    Article  Google Scholar 

  12. Bairstow, L. (1910) The elastic limits of iron and steel under cyclic variation of stress. Phil. Trans. R. Soc. London A, 210, 35–55.

    Article  Google Scholar 

  13. Behan, P.P. (1961–2) Axial load and strain-cycling fatigue of copper at low endurance. J. Inst. Metals, 89, 328–38.

    Google Scholar 

  14. Behan, P.P. and Ford, H. (1961) Low endurance fatigue of a mild steel and an aluminum alloy. J. Mech. Engng. Sci., 3, 119–32.

    Article  Google Scholar 

  15. Ellyin, F. and Kujawski, D. (1984) Plastic strain energy in fatigue failure. J. Pressure Vessel Technol, Trans. ASME, 106, 342–7.

    Article  Google Scholar 

  16. Miner, M.A. (1945) Cumulative damage in fatigue. Trans. ASME, 67, A159–64.

    Google Scholar 

  17. Enomoto, N. (1955) On fatigue tests under progressive stress. Proc. ASTM, 55, 903–13.

    Google Scholar 

  18. Martin, D.E. (1961) An energy criterion for low-cycle fatigue. J. Basic Engng., Trans. ASME, 83, 565–71.

    Google Scholar 

  19. Feltner, C.E. and Morrow, J.D. (1961) Microplastic strain hysteresis energy as a criterion for fatigue failure. J. Basic Engng., Trans. ASME, 83, 15–22.

    Google Scholar 

  20. Ivanova, V.S. (1963) Fatigue Failure of Metals (in Russian), Metallurgizdat, Moscow.

    Google Scholar 

  21. Gillemot, L.F. (1966) Low-Cycle Fatigue by Constant Amplitude True Mean Stress. Proceedings of the 1st International Conference on Fracture, 1965, Japan. The Japanese Society for Strength and Fracture of Materials, Tokyo, pp. 1461–77.

    Google Scholar 

  22. Hanstock, R.F. (1947) Damping capacity, strain hardening and fatigue. Proc. Physical Soc., 59, 275-87.

    Article  Google Scholar 

  23. Haiford, G.R. (1966) The energy required for fatigue. J. Mater., 1, 3–18.

    Google Scholar 

  24. Ellyin, F. and Kujawski, D. (1986) An energy-based fatigue failure criterion, in Microstructure and Mechanical Behaviour of Materials, Vol. II (eds H. Gu and J. He), EMAS, West Midlands, UK, pp. 541–600.

    Google Scholar 

  25. Mediratta, S.R., Ramaswamy, V. and Rama Rao, P. (1988) On the estimation of the cyclic plastic strain energy of dual-phase steels. Int. J. Fatigue, 10, 13–19.

    Article  Google Scholar 

  26. Lefebvre, D. and Ellyin, F. (1984) Cyclic response and inelastic strain energy in low-cycle fatigue. Int. J. Fatigue, 6, 9–15.

    Article  Google Scholar 

  27. Lukáš, P. and Kiesnil, M. (1973) Cyclic stress-strain response and fatigue life of metals in low amplitude region. Mater. Sci. Engng., 11, 345–6.

    Article  Google Scholar 

  28. Troshchenko, V.T. et al. (1985) Cyclic Deformation and Fatigue of Metals (in Russian), Naukova Dumka, Kiev.

    Google Scholar 

  29. Golos, K. and Ellyin, F. (1987) Generalization of cumulative damage criterion to multilevel cyclic loading. Theor. Appl. Fract. Mech., 7, 169–76.

    Article  Google Scholar 

  30. Golos, K. and Ellyin, F. (1988) A total strain energy density theory for cumulative damage. J. Pressure Vessel TechnoL, Trans. ASME, 110, 36–41.

    Google Scholar 

  31. Kujawski, D. and Ellyin, F. (1988) On the concept of cumulative fatigue damage. Int. J. Fract., 37, Kluwer Academic Publishers, Dordrecht, pp. 263–78.

    Google Scholar 

  32. Hunter, M.S. and Fricke, W.G. (1954) Metallographic aspects of fatigue behaviour of aluminum. Proc. ASTM, 54, 717–36.

    Google Scholar 

  33. Bennett, J.A. (1946) A study of the effect of fatigue stressing on X4130 steel. Proc. ASTM, 46, 693–771.

    Google Scholar 

  34. Palmgren, A. (1924) Endurance of ball bearing. Z. Ver. Deutsch Ing., 68, 339–41.

    Google Scholar 

  35. Marco, S.M. and Starkey, W.L. (1954) A concept of fatigue damage. Trans. ASME, 76, 627–32.

    Google Scholar 

  36. Manson, S.S., Nachtigall, A.J. and Freche, J.C. (1961) A proposed new relation for cumulative fatigue damage in bending. Proc. ASTM, 61, 679–92.

    Google Scholar 

  37. Subramanyan, S. (1976) A cumulative damage rule based on the knee point of the S-N curve. J. Engng. Mater. TechnoL, Trans. ASME, 98, 316–22.

    Article  Google Scholar 

  38. Hashin, Z. and Rotem, A. (1978) A cumulative damage theory of fatigue failure. Mater. Sci. Engng., 34, 147–60.

    Article  Google Scholar 

  39. Srivatsavan, R. and Subramanyan, S. (1978) A cumulative damage rule based on successive reduction in fatigue limit. J. Engng. Mater. Technol., Trans. ASME, 100, 212–14.

    Article  Google Scholar 

  40. Kuno, T., Shimizu, H. and Yamada, K. (1969) Micro-structural Aspects of Fatigue Behaviour of Rapid Heat Treated Steel. Proc. 2nd Conf. On Fracture, April 1969, Brighton, UK (ed. P.L. Pratt): Chapman & Hall, pp. 630–42.

    Google Scholar 

  41. Kujawski, D. and Ellyin, F. (1984) A cumulative damage theory for fatigue crack initiation and propagation. Int. J. Fatigue, 6, 83–8.

    Article  Google Scholar 

  42. Lukas, P. and Kunz, L. (1981) Influence of notches on high cycle fatigue life. Mater. Sci. Engng., 47, 93–8.

    Article  Google Scholar 

  43. Manson, S.S. and Haiford, G.R. (1981) Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Int. J. Fract., 17, 169–92.

    Article  Google Scholar 

  44. Manson, S.S. (1966) Interfaces between fatigue, creep, and fracture. Int. J. Fract., 2, 327–63.

    Article  Google Scholar 

  45. Miller, K.J. and Zachariah, K.P. (1977) Cumulative damage laws for fatigue crack initiation and Stage I propagation. J. Strain Anal., 12, 262–70.

    Article  Google Scholar 

  46. Ibrahim, M.F.E. and Miller, K.J. (1980) Determination of fatigue crack initiation life. Fatigue Engng. Mater. Struct., 2, 351–60.

    Article  Google Scholar 

  47. Hashin, Z. and Laird, C. (1980) Cumulative damage under two level cycling. Fatigue Engng. Mater. Struct., 2, 345–50.

    Article  Google Scholar 

  48. Manson, S.S. and Halford, G.R. (1986) Re-examination of cumulative fatigue damage analysis — an engineering perspective. Engng. Fract. Mech., 25, 539–71.

    Article  Google Scholar 

  49. Coffin, L.F. (1973) Fatigue at high temperatures, in Fatigue at High Temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, PA, pp. 5–43.

    Chapter  Google Scholar 

  50. Morishita, M. and Asada, Y. (1984) Creep-fatigue interaction: data base analysis and application. Nucl. Engng. Design, 83, 367–77.

    Article  Google Scholar 

  51. Coffin, L.F. (1977) Fatigue at High Temperature. Fracture 1977, Proc. ICF 4, Part I (ed. D.M.R. Taplin). Pergamon Press, Waterloo, Canada, pp. 263–92.

    Google Scholar 

  52. Coffin, L.F. (1980) Damage processes in time-dependent fatigue, in Creep-Fatigue-Environment Interaction (eds P.M. Pelloux and N.S. Stoloff), The Metallurgical Society of AIME, Warrendale, PA, pp. 1–23.

    Google Scholar 

  53. Bui-Quoc, T. (1982) Recent developments of continuous damage approaches for the analysis of material behaviour under fatigue-creep loading, in Inelastic Analysis and Life Prediction in Elevated Temperature Design, PVP 59 (ed. G. Baylac), American Society of Mechanical Engineers, New York, pp. 211–26.

    Google Scholar 

  54. Ueda, M., Tanigawa, M. and Hara, Y. (1986) Evaluation of Life Prediction Methods using Published Creep-Fatigue Data. Proc. Int. Conf. on Creep, April 1986, Tokyo, Japan. Japan Society of Mechanical Engineers, pp. 397–402.

    Google Scholar 

  55. Murakami, S. (1987) Progress of continuum damage mechanics. JSME Int. J., 30, 701–10.

    Google Scholar 

  56. Inoue, T. et al. (1989) Fatigue-creep life prediction of 2 1/2 Cr-1 Mo steel by inelastic analysis. Nucl. Engng. Design, 114, 311–21.

    Article  Google Scholar 

  57. Robinson, E.L. (1952) Effect of temperature variation on the long-time rupture strength of steels. Trans. ASME, 74, 777–81.

    Google Scholar 

  58. Taira, S. (1962) Lifetime of structures subjected to varying load and temperature, in Creep in Structures (ed. N.J. Hoff), Academic Press, New York, pp. 96–124.

    Google Scholar 

  59. Manson, S.S. (1966) Interfaces between fatigue, creep and fracture. Int. J. Fract. Mech., 2, 327–63.

    Article  Google Scholar 

  60. Polhemus, J.F., Spaeth, C.E. and Vogel, W.H. (1973) Ductility exhaustion model for prediction of thermal fatigue and creep interaction, in Fatigue at Elevated Temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, PA, pp. 625–36.

    Chapter  Google Scholar 

  61. Manson, S.S., Haiford, G.R. and Hirschberg, M.H. (1971) Creep-fatigue analysis by strain-range partitioning, in Design for Elevated Temperature Environment (ed. S.Y. Zamrik), American Society of Mechanical Engineers, New York, pp. 12–24.

    Google Scholar 

  62. Kachanov, L.M. (1961) Rupture time under creep conditions, in Problems of Continuum Mechanics, SLAM, Philadelphia, PA, pp. 202–18.

    Google Scholar 

  63. Majumdar, S. and Maiya, P.S. (1980) A mechanistic model for time-dependent fatigue. J. Engng. Mater. Technol, Trans. ASME, 102, 159–67.

    Article  Google Scholar 

  64. Majumdar, S. (1984) Relationship of creep, creep-fatigue and cavitation damage in type 304 austenitic stainless steel. J. Engng. Mater. Technol., Trans. ASME, 111, 123–31.

    Article  Google Scholar 

  65. Lemaitre, J. and Plumtree, A. (1979) Application of damage concept to predict creep-fatigue failure. J. Engng. Mater. Technol, Trans. ASME, 101, 284–92.

    Article  Google Scholar 

  66. Saitoh, M. and Krempl, E. (1982) An incremental life prediction law for creep-fatigue interaction, in Material Behaviour at Elevated Temperatures and Components Analysis, PVP 10 (eds Y. Yamada et al.), American Society of Mechanical Engineers, New York, pp. 71–9.

    Google Scholar 

  67. Asada, Y. et al. (1987) Creep-fatigue damage evaluation of 304 stainless steel and 2 1/4 Cr-1 Mo steel based on overstress concept, in Advances in Piping Analysis and Life Assessment for Pressure Vessels and Piping, PVP 129 (eds S.J. Chang et al.), American Society of Mechanical Engineers, New York, pp. 93–9.

    Google Scholar 

  68. American Society of Mechnical Engineers (1994) ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Power Plant Components, ASME, New York.

    Google Scholar 

  69. Rice, J.R. (1981) Constraints on the diffusive cavitation of isolated grain boundary facets in creeping polycrystals. Acta Metall., 29, 675–81.

    Article  Google Scholar 

  70. Ellyin, F. and Asada, Y. (1991) Time-dependent fatigue failure: the creep-fatigue interaction. Int. J. Fatigue, 13, Elsevier Science Ltd, Oxford, pp. 157–64.

    Article  Google Scholar 

  71. Verkin, B.I. and Grinberg, N.M. (1979) The effect of vacuum on the fatigue behaviour of metals and alloys. Mater. Sci. Engng., 41, 149–81.

    Article  Google Scholar 

  72. Wei, R.P. and Simmons, G.W. (1981) Recent progress in understanding environmental assisted fatigue crack growth. Int. J. Fract., 17, 235–47.

    Article  Google Scholar 

  73. Coffin, L.F. (1983) Overview of temperature and environment effect on fatigue of structural metals, in Fatigue, Environment and Temperature Effects (eds. J.J. Burke and V. Veiss), Plenum Press, New York, pp. 1–40.

    Google Scholar 

  74. Gangloff, R.P. (1990) Corrosion Fatigue Crack Propagation. Proc. Environment-Induced Cracking of Metals, NACE-10, Houston, Texas (eds R.P. Gangloff and M.B. Ives). National Association of Corrosion Engineers, pp. 55–109.

    Google Scholar 

  75. Marchionni, M., Ranucci, D. and Picco, E. (1982) High-Temperature Low-Cycle Fatigue Behaviour of IN738LC Alloy in Air and Vacuum. Proc. Conf. High Temperature Alloys for Gas Turbines, Dordrecht, Holland (ed. R. Brunetaund), pp. 791–804.

    Google Scholar 

  76. Liu, K.C. and Loring, C.M. Jr (1984) Low-cycle fatigue behaviour of oxygen-free high-conductivity copper at 300°C in high vacuum. J. Nucl. Mater., 122, 123, 783–8.

    Article  Google Scholar 

  77. Earthman, J.C., Eggeler, G. and Ilschner, B. (1989) Deformation and damage process in a 12% Cr-Mo-V steel under high temperature low cycle fatigue condition in air and vacuum. Mater. Sci. Engng., A110, 103–14.

    Article  Google Scholar 

  78. Ranucci, D., Marchionni, D., Picco, E., Gherardi, F. and Caciorgna, O. (1983) Effect of Strain Rate in Air and Vacuum on the High-Temperture Low-Cycle Fatigue Behaviour of Cast IN100 Alloy. Proc. 6th Int. Conf. on Strength of Metals and Alloys, Melbourne, Australia, vol. 2 (ed. Grfkins). Pergamon Press, pp. 927–32.

    Google Scholar 

  79. Van Der Sluys, W.A. and Yukawa, S. (1995) Status of PVRC evaluation of LWR coolant environment effects on the S-N fatigue properties of pressure boundary materials, in Fatigue and Crack Growth-Environmental Effects, Modeling Studies and Design Considerations, PVP 306 (eds S. Yukawa, D.P. Jones and H.S. Mehta), American Society of Mechanical Engineers, New York, pp. 47–58.

    Google Scholar 

  80. Ellyin, F. and Li, B. (1993) Crack initiation and fatigue lives in air and vacuum environments. Mater. Sci. Engng., A171, 105–13.

    Article  Google Scholar 

  81. Wang, R., Mughrabi, H., McGovern, S. and Rapp, M. (1984) Fatigue of copper single crystals in vacuum and in air, I: persistent slip bands and dislocation microstructures. Mater. Sci. Engng., 65, 219–33.

    Article  Google Scholar 

  82. Wang, R. and Mughrabi, H. (1984) Fatigue of copper single crystals in vacuum and in air, II: Fatigue crack propagation. Mater. Sci. Engng., 65, 235–43.

    Article  Google Scholar 

  83. Kujawski, D. and Ellyin, F. (1992) Initiation and total fatigue life of a low alloy carbon steel in vacuum and air. J. Testing Eval., 20, ASTM, 391–5.

    Article  Google Scholar 

  84. Li, P., Marchand, N.J. and Ilschner, B. (1989) Crack initiation mechanisms in low cycle fatigue of aluminum alloy. Mater. Sci. Engng., A119, 41–50.

    Article  Google Scholar 

  85. Garud, Y.S. (1991) Qualitative evaluation of environmentally assisted cracking: A survey of developments and application of modeling concepts. J. Pressure Vessel Technol., Trans. ASME, 113, 1–9.

    Article  Google Scholar 

  86. Koh, S.K. and Stephens, R. (1991) Mean stress effects on low cycle fatigue for a high strength steel. Fatigue Fract. Engng. Mat. Struct., 14 (4), 413–28.

    Article  Google Scholar 

  87. Wang, J. (1992) Low cycle fatigue and cycle dependent creep with continuum damage mechanics. Int. J. Damage Mechanics, 1, 237–44.

    Article  Google Scholar 

  88. Pokluda, J. and Stanek, P. (1978) Evaluation of cyclic creep for 12010, 14331 steels and effect of cyclic asymmetry on life in the range of time-dependent fatigue reliability (in Czech). Kovové Materiály, 5 (16), 583–99.

    Google Scholar 

  89. Manson, S.S. (1966) Thermal stress and low cycle fatigue, McGraw-Hill, New York.

    Google Scholar 

  90. Kujawski, D. and Ellyin, F. (1995) A unified approach to mean stress effect on fatigue threshold conditions. Int. J. Fatigue, 17, 101–6.

    Article  Google Scholar 

  91. Xia, Z., Kujawski, D. and Ellyin, F. (1996) Effect of mean stress and ratcheting strain on fatigue life of materials. Int. J. Fatigue, 18 (5), 333–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Ellyin, F. (1997). Phenomenological approach to fatigue life prediction under uniaxial loading. In: Fatigue Damage, Crack Growth and Life Prediction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1509-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1509-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7175-8

  • Online ISBN: 978-94-009-1509-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics