Skip to main content

The cytoskeleton and epithelial function

  • Chapter
Epithelial Transport
  • 117 Accesses

Abstract

The number of known and proposed functions of the cytoskeleton have grown dramatically since the first descriptions of these filamentous components of the cytoplasm. Clear evidence to support a role in cell shape and structure (a true expression of function based on the term skeleton) has been repeatedly produced. Other functions include motile processes (whether the cell or its parts are locomoting or specific cytoplasmic constituents are moving inside a static cell) and the anchoring of the cells to substrates and to each other or the gelling of the cytoplasm so that movement within the cell space is restricted. With regard to epithelial cells some of the most significant functions for the different cytoskeletal elements are the establishment of epithelial polarity (Chapter 3), the maintenance of cell and substrate junctions, the trafficking of cell membrane proteins to and from membrane domains, the anchoring of these transport proteins in the cell membrane and the role that the cytoskeleton could play in signal transduction and regulation of transport events. The purpose of this chapter is to describe selected examples of the wide array of proteins grouped under the broad heading of cytoskeleton, review the use of drugs that act on the cytoskeleton and discuss selected epithelial models where a picture is emerging as to the role that the cytoskeleton plays in transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, K.A., Krill, J., Alberghini, T.V. and Evans, J.N. (1983) Effect of cytochalasin D on smooth muscle contraction. Cell Motil. 3:545–51.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J. et al. (1994) Molecular Biology of the Cell, Garland Publ. Inc., New York.

    Google Scholar 

  • Asch, H.L., Mayhew, E., Lazo, R.O. and Asch, B.B. (1990) Lipids noncovalently associated with keratins and other cytoskeletal proteins of mouse mammary epithelial cells in primary culture. Biochim. Biophys. Acta 1034:303–8.

    PubMed  CAS  Google Scholar 

  • Bacallao, R., Antony, C., Dotti, C. et al. (1989) The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109:2817–32.

    Article  PubMed  CAS  Google Scholar 

  • Bacskai, B.J. and Friedman, P.A. (1990) Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature 347:388–91.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V. (1992) Ankyrins: adaptors between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267:8703–6.

    PubMed  CAS  Google Scholar 

  • Bennett, V. and Gilligan, D.M. (1993) The spectrin-based membrane cytoskeleton and micron-scale organization of the plasma membrane. Ann. Rev. Cell Biol. 9:27–66.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V. and Lambert, S. (1991) The spectrin skeleton: From red cells to brain. J. Clin. Invest. 87:1483–9.

    Article  PubMed  CAS  Google Scholar 

  • Boisvieux-Ulrich, E., Laine, M.-C. and Sandoz, D. (1990) Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium. Cell Tissue Res. 259:443–54.

    Article  PubMed  CAS  Google Scholar 

  • Cantiello, H.F., Stow, J.L., Prat, A.G. and Ausiello, D.A. (1991) Actin filaments regulate epithelial Na+ channel activity. Am. J. Physiol. 261:C882–C889.

    PubMed  CAS  Google Scholar 

  • Cantiello, H.F., Prat, A.G., Bonventre, J.V. et al. (1993) Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J. Biol Chem. 268:4596–9.

    PubMed  CAS  Google Scholar 

  • Casella, J.F., Flanagan, M.D. and Lin, S. (1981) Cytochalasin D inhibits actin polymerization and induces depolymerizarion of actin filaments formed during platelet shape change. Nature 293:302–5.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. (1987) Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105:1473–8.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J., Davis, L. and Bennett, V. (1989) Diversity in membrane binding sites of ankyrins. J. Biol. Chem. 264:6417–26.

    PubMed  CAS  Google Scholar 

  • Dentler, W.L. and Adams, C. (1992) Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum. J. Cell Biol. 117:1289–98.

    Article  PubMed  CAS  Google Scholar 

  • Ding, G., Franki, N., Condeelis, J. and Hays, R.M. (1991) Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am. J. Physiol. 260:C9–C16.

    PubMed  CAS  Google Scholar 

  • Dosemeci, A. and Pant, H.C. (1992) Association of cyclic-AMP-dependent protein kinase with neurofilaments. Biochem. J. 282:477–81.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D. and Dermietzel, R. (1988) Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J. Cell Biol. 107:1037–48.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn, D., Schluter, K., Allen, D.P. and Bennett, V. (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230:1287–9.

    Article  PubMed  CAS  Google Scholar 

  • Eilers, U., Klumperman, J. and Hauri, H.-P. (1989) Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2). J. Cell Biol. 108:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Fath, K.R., Mamajiwalla, S.N. and Burgess, D.R. (1993) The cytoskeleton in development of epithelial cell polarity. J. Cell Sci. 17:65–73.

    CAS  Google Scholar 

  • Faulstich, H. (1982) Structure-activity relationship of actin-binding peptides, in Chemistry of Peptides and Proteins, (eds W. Voelter, E. Wunsch, Y. Ovchinnikov and V. Ivanov), W. de Gruyter, New York, pp. 279–88.

    Google Scholar 

  • Feuilloley, M, Desrues, L. and Vaudry, H. (1993) Effect of cytochalasin-B on the metabolism of polyphosphoinositides in adrenocortical cells. Endocrinol 133:2319–26.

    Article  CAS  Google Scholar 

  • Foisner, R. and Wiche, G. (1991) Intermediate filament-associated proteins. Curr. Opin. Cell Biol. 3:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.E.B. and Philipps, D.R. (1981) Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 292:650–2.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.E.B., Dockter, M.E. and Phillips, D.R. (1981) An improved method for determining the actin filament content of nonmuscle cells by the DNase I inhibition assay. Anal. Biochem. 117:170–7.

    Article  PubMed  CAS  Google Scholar 

  • Franki, N., Ding, G., Gao, Y. and Hays, R.M. (1992) The effect of cytochalasin D on the actin cytoskeleton of the toad bladder epithelial cell. Am. J. Physiol. 263:C995–C1000.

    PubMed  CAS  Google Scholar 

  • Frappier, T., Derancourt, J. and Pradel, L.-A. (1992) Actin and neurofilament binding domain of brain spectrin B subunit. Eur. J. Biochem. 205:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. (1994) Intermediate filaments and disease: mutations that cripple cell strength. J. Cell Biol. 125:511–16.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. and Weber, K. (1994) Intermediate filaments: structure, dynamics, function and disease. Ann. Rev. Biochem. 63:345–82.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, C.M., Bridges, R.J. and Benos, D.J. (1994) Forskolin — but not ionomycin — evoked Cl- secretion in colonic epithelia depends on intact microtubules. Am. J. Physiol. 266:C661–C668.

    PubMed  CAS  Google Scholar 

  • Fulton, C. and Simpson, P.A. (1979) Tubulin pools, synthesis and utilization, in Microtubules, (eds K. Roberts and J.S. Hyams), Academic Press, New York, pp. 118–74.

    Google Scholar 

  • Georgatos, S.D. and Blobel, G. (1987) Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: a basis for vectorial assembly of intermediate filaments. J. Cell Biol. 105:117–25.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, T., Lebivic, A., Quaroni, A. and Rodriguez-Boulan, E. (1991) Microtubule organization and its involvement in the biogenetic pathways of plasma meme-brane proteins in CaCo-2 intestinal epithelial cells. J. Cell Biol. 113:275–84.

    Article  PubMed  CAS  Google Scholar 

  • Glenney, J.P., Glenney, P. and Weber, K. (1983) The spectrin related molecule TW 260/240 cross-links actin bundles of the microvillus rootlets in the brush borders of intestinal epithelial cells. J. Cell Biol. 96:1491–6.

    Article  PubMed  CAS  Google Scholar 

  • Gundersen, D., Orlowski, J. and Rodriguez-Boulan, E. (1991) Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J. Cell Biol. 112:863–72.

    Article  PubMed  CAS  Google Scholar 

  • Hansch, E., Forgo, J., Murer, H. and Biber, J. (1993) Role of microtubules in the adaptive response to low phosphate of Na/P1 cotransport in oppossum kidney cells. Pflügers Archiv. 422:516–22.

    Article  PubMed  CAS  Google Scholar 

  • Hastie, S.B. (1991) Interactions of colchicine with tubulin. Pharmac. Ther. 51:377–401.

    Article  CAS  Google Scholar 

  • Hays, R.M., Franki, N., Simon, H. and Gao, Y. (1994) Antidiuretic hormone and exocytosis: lessons from neurosecretion. Am. J. Physiol. 267:C1507–1524.

    PubMed  CAS  Google Scholar 

  • Herrmann, H. and Wiche, G. (1987) Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240 kilodalton subunit of spectrin. J. Biol. Chem. 262:1320–5.

    PubMed  CAS  Google Scholar 

  • Holmgren, K., Magnusson, K.E., Franki, N. and Hays, R. M. (1992) ADH-induced depolymerization of F-actin in the toad bladder granular cell: a confocal microscope study. Am. J. Physiol. 262:C672–C677.

    PubMed  CAS  Google Scholar 

  • Horkovics-Kovats, S. and Traub, S. (1990) Specific interaction of the intermediate filament protein vimentin and its isolated N-terminus with negatively charged phospholipids as determined by vesicle aggregation, fusion, and leakage measurements. Biochem. 29:8652–7.

    Article  CAS  Google Scholar 

  • Hunziker, W., Vale, P. and Mellmam, I. (1990) Differential microtubule requirements for transcytosis in MDCK cells. EMBO J. 9:3515–25.

    PubMed  CAS  Google Scholar 

  • Ishikawa, H., Bischoff, R. and Holtzer, H. (1968) Mitosis and intermediate-sized filaments in developing skeletal muscle. J. Cell Biol. 38:538–55.

    Article  PubMed  CAS  Google Scholar 

  • Jessen, F. and Hoffmann, E.K. (1992) Activation of the Na+/K+/Cl- cotransport system by reorganization of the actin filaments in Ehrlich ascites tumor cells. Biochim. Biophys Acta 1110:199–201.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M.A., Thrower, D. and Wilson, L. (1992) Effects of vinblastine, podophyllotoxin, and nocodozole on mitotic spindles: implications for the role of microtubule dynamics in mitosis. J. Cell Sci. 102:401–16.

    PubMed  CAS  Google Scholar 

  • Kachadorian, W.A., Ellis, S.J. and Muller, J. (1979) Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am. J. Physiol. 236:F14–F20.

    PubMed  CAS  Google Scholar 

  • Kolber, M.A., Broschat, K.O. and Land-Gonzalez, B. (1990) Cytochalasin B induces cellular DNA fragmentation. FASEB. J. 4:3021–7.

    PubMed  CAS  Google Scholar 

  • Low, I., Dancker, P. and Wieland, T. (1975) Stabilization of F-actin by phalloidin reversal of the destabilizing effect of cytochalasin B. FEBS Letters 54:263–5.

    Article  PubMed  CAS  Google Scholar 

  • Luna, E.J. and Hitt, A.L. (1992) Cytoskeleton-plasma membrane interactions. Science 258:955–64.

    Article  PubMed  CAS  Google Scholar 

  • Madara, J.L. (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am. J. Physiol. 253:C171–G175.

    PubMed  CAS  Google Scholar 

  • Madara, J.L. (1989) Loosening tight junctions. J. Clin. Invest. 83:1089–94.

    Article  PubMed  CAS  Google Scholar 

  • Madara, J.L., Barenberg, D. and Carlson, S. (1986) Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell Biol. 102:2125–36.

    Article  PubMed  CAS  Google Scholar 

  • Madara, J.L., Moore, R. and Carlson, S. (1987a) Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am. J. Physiol. 253:C854–C861.

    PubMed  CAS  Google Scholar 

  • Madara, J.L., Moore, R. and Carlson, S. (1987b) Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am. J. Physiol 253:C854–C861.

    PubMed  CAS  Google Scholar 

  • Matthews, J.B., Awtrey, C.S. and Madara, J.L. (1992) Microfilament-dependent activation of Na+/K+/2Cl- cotransport by cAMP in intestinal epithelial monolayers. J. Clin. Invest. 90:1608–13.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, J.B., Tally, K.J., Smith, J.A. and Awtrey, C.S. (1994) F-actin differentially alters epithelial transport and barrier function. J. Surg. Res. 56:505–9.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. (1994) MAP2, in Microtubules, (eds J.S. Hyams and C.W. Loyd), Wiley-Liss, New York, pp. 155–66.

    Google Scholar 

  • Mays, R.W., Beck, K.A. and Nelson, W.J. (1994) Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr. Opin. Cell Biol. 6:16–24.

    Article  PubMed  CAS  Google Scholar 

  • McClure, W.O. and Paulson, J.C. (1977) The interaction of colchicine and some related alkaloids with rat brain tubulin. Molec. Pharmac. 13:560–75.

    CAS  Google Scholar 

  • Mercier, F., Reggio, H., Devilliers, G. et al. (1989) Membrane-cytoskeleton dynamics in rat parietal cells: mobilization of actin and spectrin upon stimulation of gastric acid secretion. J. Cell Biol. 108:441–53.

    Article  PubMed  CAS  Google Scholar 

  • Mihic, S.J., Whatley, V.J., McQuilkin, S.J. and Harris, R.A. (1994) B-lumicolchicine interacts with the benzodiazepine binding site to potentiate GABAA receptor-mediated currents. J. Neurochem. 62:1790–4.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J.W. (1987) The cell cytoskeleton: possible role in volume control, in Current Topics in Membranes and Transport, (eds R. Gilles, A. Kleinzeller and L. Boles), Academic Press, New York, pp. 75–101.

    Google Scholar 

  • Mills, J.W. and Lubin, M.L. (1986) Effect of adenosine 3′,5′-cyclic monophosphate on volume and cytoskeleton of MDCK cells. Am. J. Physiol. 250:C319–C324.

    PubMed  CAS  Google Scholar 

  • Mills, J.W. and Mandel, L.J. (1994) Cytoskeletal regulation of membrane transport events. FASEB J. 8:1161–5.

    PubMed  CAS  Google Scholar 

  • Mills, J.W., Schwiebert, E.M. and Stanton, B.A. (1993) Evidence for the role of actin filaments in regulating cell swelling. J. Exp. Zool. 268:111–20.

    Article  Google Scholar 

  • Mookerjee, B.K., Cuppoletti, J., Rampai, A.L. and Jung, C.Y. (1981) The effects of cytochalasins on lymphocytes. J. Biol. Chem. 256:1290–300.

    PubMed  CAS  Google Scholar 

  • Morris, A. and Tannenbaum, J. (1980) Cytochalasin D does not produce net depolymerization of actin filaments in HEp-2 cells. Nature 287:637–9.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J.S., Cianci, CD., Ardito, T. et al. (1989) Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby Canine Kidney cells and in intact renal tubule cells. J. Cell Biol. 108:455–65.

    Article  PubMed  CAS  Google Scholar 

  • Muller, R., Kindler, S. and Garner, C.C. (1994) The MAP1 family, in Microtubules, (eds J.S. Hyams and C.W. Loyd), Wiley-Liss, New York, pp. 141–54.

    Google Scholar 

  • Olmstead, J. (1991) Non-motor microtubule-associated proteins. Curr. Opin. Cell Biol. 3:52–8.

    Article  Google Scholar 

  • Ornelles, D.A., Fey, E.G. and Penman, S. (1986) Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis. Mol. Cell Biol. 6:1650–62.

    PubMed  CAS  Google Scholar 

  • Pitelka, D.R. and Taggart, B.N. (1983) Mechanical tension induces lateral movement of intramembrane components of the tight junction: studies on mouse mammary cells in culture. J. Cell Biol. 96:606–12.

    Article  PubMed  CAS  Google Scholar 

  • Prat, A.G., Bertorello, A.M., Ausiello, D.A. and Cantiello, H.F. (1993) Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am. J. Physiol. 265:C224–C233.

    PubMed  CAS  Google Scholar 

  • Rampal, A.L., Pinokofsky, H.B. and Jung, C.Y. (1980) Structure of cytochalasins and cytochalasin B binding site in human erythrocyte membranes. Biochem. 259:679–83.

    Google Scholar 

  • Ringel, I. and Horwitz, S.B. (1991) Effect of alkaline pH on taxol-microtubule interactions. J. Pharmacol. Exp. Ther. 259:855–60.

    PubMed  CAS  Google Scholar 

  • Sauman, I. and Berry, S.J. (1994) An actin infrastructure is associated with eukaryotic chromosomes: stuctural and functional significance. Eur. J. Cell Biol. 64:348–56.

    PubMed  CAS  Google Scholar 

  • Schiff, P.B., Fant, J. and Horwitz, S.B. (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–7.

    Article  PubMed  CAS  Google Scholar 

  • Schiff, P.B. and Horwitz, S.B. (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. 77:1561–5.

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert, E.M., Mills, J.W. and Stanton, B.A. (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J. Biol Chem. 269:7081–9.

    PubMed  CAS  Google Scholar 

  • Shapiro, M., Matthews, J., Hecht, G. et al. (1991) Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells. J. Clin. Invest. 87:1903–9.

    Article  PubMed  CAS  Google Scholar 

  • Shoeman, R.L. and Traub, P. (1993) Assembly of intermediate filaments. BioEssays 15:605–11.

    Article  PubMed  CAS  Google Scholar 

  • Simon, H., Gao, Y., Franki, N. and Hays, R.M. (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am. J. Physiol. 265:C757–C762.

    PubMed  CAS  Google Scholar 

  • Stadler, J. and Franke, W.W. (1974) Characterization of the colchicine binding of membrane fractions from rat and mouse liver. J. Cell Biol. 60:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, B.R. and Begg, D.A. (1994) Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J. Cell Sci. 107:367–75.

    PubMed  CAS  Google Scholar 

  • Stewart, M. (1993) Intermediate filament structure and assembly. Curr. Opin. Cell Biol. 5:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Thatte, H.S., Bridges, K.R. and Golan, D.E. (1994) Microtubule inhibitors differentially affect translational movement, cell surface expression, and endocytosis of transferrin receptors in K562 cells. J. Cell. Physiol. 160:345–57.

    Article  PubMed  CAS  Google Scholar 

  • Venetianer, A., Schiller, D.L., Magin, T. and Franke, W.W. (1983) Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions. Nature 305:730–3.

    Article  PubMed  CAS  Google Scholar 

  • Volberg, T., Geiger, B., Kartenbeck, J. and Franke, W.W. (1986) Changes in membrane-microfilament interaction in cellular adherens junctions upon removal of extracellular Ca2+ ions. J. Cell Biol. 102:1832–42.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K., Pleismann, U. and Ulrich, W. (1989) Cytoplasmic intermediate filament proteins of invertebrates are closer to nuclear lamins than are vertebrate intermediate filament proteins; sequence characterization of two muscle proteins of a nematode. EMBO J. 8:3221–7.

    PubMed  CAS  Google Scholar 

  • Wilder, J.A. and Ashman, R.F. (1991) Actin polymerization in murine B lymphocytes is stimulated by cytochalasin D but not by anti-immunoglobulin. Cellul. Immunol. 137:514–28.

    Article  CAS  Google Scholar 

  • Wilson, L. and Jordan, M.A. (1994) Pharmacological probes of microtubule function, in Microtubules, (eds J.S. Hyams and C.W. Loyd), Wiley-Liss, New York, pp. 59–83.

    Google Scholar 

  • Wordeman, L. and Mitchison, T.J. (1994) Dynamics of microtubule assembly in vivo, in Microtubules, (eds J.S. Hyams and C.W. Loyd), Wiley-Liss, New York, pp. 287–301.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Mills, J.W. (1996). The cytoskeleton and epithelial function. In: Wills, N.K., Reuss, L., Lewis, S.A. (eds) Epithelial Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1495-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1495-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7168-0

  • Online ISBN: 978-94-009-1495-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics