Skip to main content

The rumen bacteria

  • Chapter
The Rumen Microbial Ecosystem

Abstract

This chapter will deal mainly with the characteristics of bacteria from the rumen that have been successfully cultivated in the laboratory. For some ecosystems, particularly those dominated by slow-growing or specialized microorganisms, it has become clear that only a very small fraction (often <1%) of the total microbial diversity has been recovered by cultural methods (Amann et al., 1995) and that descriptions of the ecosystem based on the available isolated strains can be highly misleading. These discrepancies are apparent both from comparison of direct microscopic and culturable counts, and from direct analyses of ribosomal RNA sequence diversity. In the rumen, organisms surviving in significant numbers must have growth rates sufficient to counteract the constant dilution due to turnover of rumen contents, and there are indications that the discrepancies may be less extreme. Leedle et al (1982) found that the culturable count fluctuated with time after feeding between 14% and 74% of the direct microscopic count in the rumens of animals fed on two different diets. Since the viability of several rumen species is known to change upon starvation, the lower figure could partly reflect changes in the viability of known, culturable species. Thus it is to be hoped that the major obstacles to cultivation of the most numerous rumen bacteria have been overcome by the development of sufficiently rigorous anaerobic methods and of suitable isolation media. It remains likely, however, that some functionally important groups (e.g. obligate syntrophs) may not have been recovered; Mclnerney et al (1981) used co-culture with Desulfovibrio in the presence of sulphate to isolate a fatty acid-oxidizing bacterium similar to Syntrophomonas wolfei from bovine rumen contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. W. W. (1990). The structure and mechanism of iron hydrogenases. Biochim. Biophys. Acta, 1020, 115–45.

    Article  PubMed  CAS  Google Scholar 

  • Akin, D. E. and Rigsby, L. L. (1985). Degradation of Bermuda and Orchard grass by species of rumen bacteria. Appl. Environ. Microbiol., 50, 825–30.

    PubMed  CAS  Google Scholar 

  • Akin, D. E. and Rigsby, L. L. (1990). Preservation of ruminal bacterium capsules by using lysine in the electron microscopy fixative. Appl. Environ. Microbiol., 56, 2933–5.

    PubMed  CAS  Google Scholar 

  • Akin, D. E., Borneman, W. S., Rigsby, L. L. and Martin, S. A. (1993). p-Coumaryl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria. Appl. Environ. Microbiol., 59, 644–7.

    PubMed  CAS  Google Scholar 

  • Allen, S. H. G. (1983). Lactate-oxaloacetate transhydrogenase from Veillonella alcalescens. Methods Enzymol., 89, 367–76.

    Google Scholar 

  • Allison, M. J. (1978). Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl. Environ. Microbiol., 35, 872–7.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., Robinson, I. M., Dougherty, R. W. and Bucklin, J. A. (1975). Grain overload in cattle and sheep: changes in microbial populations in the caecum and rumen. Am. J. Vet. Res., 36, 181–5.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., Dawson, K. A., Mayberry, W. R. and Foss, J. G. (1985). Oxalobacter formigenes gen. nov. sp. nov.: oxalate degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol., 141, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Allison, M. J., Mayberry, W. R., McSweeney, C. S. and Stahl, D. L. (1992). Synergistes jonesii gen. nov. sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst. Appl. Microbiol., 15, 522–9.

    CAS  Google Scholar 

  • Amann, R. I., Lin, C., Key, R. et al. (1992). Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol., 15, 23–31.

    Article  Google Scholar 

  • Amann, R. I., Ludwig, W. and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143–9.

    PubMed  CAS  Google Scholar 

  • Anderson, K. L. (1995). Biochemical analysis of starch degradation by Ruminobacter amylophilus 70. Appl. Environ. Microbiol., 61, 1488–91.

    PubMed  CAS  Google Scholar 

  • Aranki, A. and Freter, R. (1972). Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am. J. Clin. Nutr., 25, 1329–34.

    PubMed  CAS  Google Scholar 

  • Archer, D. B. and Harris, J. E. (1986). Methanogenic bacteria and methane production in various habitats. In Anaerobic Bacteria in Habitats Other than Man, ed. E. M. Barnes and G. C. Mead. Blackwell Scientific Publications, Oxford, pp. 185–223.

    Google Scholar 

  • Attwood, G. T. and Reilly, K. (1995). Identification of proteolytic rumen bacteria isolated from New Zealand. J. Appl Bacteriol., 79, 22–9.

    PubMed  CAS  Google Scholar 

  • Avgustin, G., Flint, H. J. and Whitehead, T. R. (1992). Distribution of xylanase genes and enzymes among strains of Prevotella ruminicola from the rumen. FEMS Microbiol Lett., 99, 137–43.

    Article  CAS  Google Scholar 

  • Avgustin, G., Wright, F. and Flint, H. J. (1994). Genetic diversity and phylogenetic relationships among strains of Prevotella (Bacteroides) ruminicola from the rumen. Int. J. Syst. Bacteriol., 44, 246–55.

    Article  PubMed  CAS  Google Scholar 

  • Avgustin, G., Wallace, R. J. and Flint, H. J. (1997). Phenotypic diversity among rumen isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov., and redefinition of Prevotella ruminicola. Int. J. Syst. Bacteriol. (in press).

    Google Scholar 

  • Baker, S. K. and Moir, R. J. (1983). Media lacking rumen fluid for enumeration of rumen bacteria. S. Afr. J. Anim. Sci., 13, 54–7.

    Google Scholar 

  • Balch, W. E., Fox, G. E., Magrum, L. J. et al. (1979). Methanogens: re-evaluation of a unique biological group. Microbiol Rev., 43, 260–96.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L. and Milligan, L. P. (1964). Electron transport in Peptostreptococcus elsdenii. Biochim. Biophys. Acta, 92, 421–32.

    PubMed  CAS  Google Scholar 

  • Beijer, W. H. (1952). Methane fermentation in the rumen of cattle. Nature, 170, 576–7.

    Article  PubMed  CAS  Google Scholar 

  • Bennink, M. R. and Bryant, M. P. (1973). Sulphate and nitrate reduction by a rumen strain of Desulfovibrio desulfuricans. In Proceedings of the I2th Biennial Conference on Rumen Function. ARS/USDA, Chicago, p. 19.

    Google Scholar 

  • Bernalier, A., Fonty, G., Bonnemoy, F. and Genet, P. (1993). Inhibition of cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J. Gen. Microbiol., 139, 873–80.

    PubMed  CAS  Google Scholar 

  • Bezkorovainy, A. (1989). Classification of Bifidobacteria. In Biochemistry and Physiology of Bifidobacteria, ed. A. Bezkorovainy and R. Miller-Catchpole. CRC Press, Boca Raton, pp. 1–28.

    Google Scholar 

  • Biavati, B. and Mattarelli, P. (1991). Bifidobacterium ruminantium sp. nov. and Bifidobacterium merycicum sp. nov. from the rumens of cattle. Int. J. Syst. Bacteriol., 41, 163–8.

    Article  PubMed  CAS  Google Scholar 

  • Boone, D. R. and Mah, R. A. (1989). Methanogenic Archaeobacteria. In Bergey’s Manual of Systematic Bacteriology, Vol. 3, ed. J. T. Staley. Williams & Wilkins, Baltimore, pp. 2173–216.

    Google Scholar 

  • Boulahrouf, A., Fonty, G. and Gouet, P. (1991). Establishment, counts and identification of the fibrolytic microflora in the digestive tract of rabbit. Influence of feed cellulose content. Curr. Microbiol., 22, 21–5.

    Article  Google Scholar 

  • Briesacher, S. L., May, T., Grigsby, K. N. et al. (1992). Use of DNA probes to monitor nutritional effects on ruminal prokaryotes and Fibrobacter succinogenes S85. J. Anim. Sci., 70, 289–95.

    PubMed  CAS  Google Scholar 

  • Brockman, H. L. and Wood. W. A. (1975). Electron-transferring flavoprotein of Peptostreptococcus elsdenii that functions in the reduction of acrylyl-coenzyme A. J. Bacteriol., 124, 1447–53.

    PubMed  CAS  Google Scholar 

  • Brooker, J. D., O’Donovan, L. A., Skene, I. et al. (1994). Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett. Appl Microbiol., 18, 313–18.

    CAS  Google Scholar 

  • Bryant, M. P. (1952). The isolation and characteristics of a spirochaete from the bovine rumen. J. Bacteriol., 64, 325–35.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. (1959). Bacterial species of the rumen. Bacteriol Rev., 23, 125–53.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. (1972). Commentary on the Hungate technique for cultivation of anaerobic bacteria. Am. J. Clin. Nutr., 25, 1324–8.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. (1974). Methane producing bacteria. In Bergey’s Manual of Determinative Bacteriology, 8th edn, ed. R. E. Buchanan and N. E. Gibbons. Williams & Wilkins, Baltimore, pp. 472–7.

    Google Scholar 

  • Bryant, M. P. (1984a). Succinivibrio. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 644–5.

    Google Scholar 

  • Bryant, M. P. (1984b). Succinimonas. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 643–4.

    Google Scholar 

  • Bryant, M. P. (1984c). Selenomonas. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 650–3.

    Google Scholar 

  • Bryant, M. P. (1984d). Butyrivibrio. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 641–3.

    Google Scholar 

  • Bryant, M. P. (1984e). Lachnospira. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Kreig and J. G. Holt. Williams & Wilkins, Baltimore, pp. 661–2.

    Google Scholar 

  • Bryant, M. P. (1986). Ruminococcus. In Bergey’s Manual of Systematic Bacteriology, Vol. 2, ed. P. H. A. Sneath. Williams & Wilkins, Baltimore, pp. 1093–7.

    Google Scholar 

  • Bryant, M. P. and Burkey, L. A. (1953a). Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci., 36, 205–17.

    Article  Google Scholar 

  • Bryant, M. P. and Burkey, L. A. (1953b). Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J. Dairy Sci., 36, 218–24.

    Article  Google Scholar 

  • Bryant, M. P. and Robinson, I. M. (1961). An improved non-selective culture medium for ruminal bacteria and its use in determining the diurnal variation in numbers of bacteria in the rumen. J. Dairy Sci., 44, 1446–56.

    Article  CAS  Google Scholar 

  • Bryant, M. P. and Robinson, I. M. (1962). Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol., 82, 605–14.

    Google Scholar 

  • Bryant, M. P. and Robinson, I. M. (1963). Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria. J. Dairy Sci., 46, 150–4.

    Article  CAS  Google Scholar 

  • Bryant, M. P. and Robinson, I. M. (1968). Effect of diet, time after feeding and position sampled on numbers of viable bacteria in the bovine rumen. J. Dairy Sci., 51, 1950–5.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M. P. and Small, N. (1956a). Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J. Bacteriol., 72, 22–6.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. and Small, N. (1956b). The anaerobic monotrichous butyric acid producing curved rod shaped bacteria of the rumen. J. Bacteriol., 72, 16–21.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., Small, N., Bouma, C. and Robinson, I. M. (1958a). Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci., 41, 1747–67.

    Article  Google Scholar 

  • Bryant, M. P., Robinson, I. M., Bouma, C. and Chu, H. (1958b). Bacteroides ruminicola n. sp. and the new genus and species Succinimonas amylolytica, species of succinic-acid producing anaerobic bacteria of the bovine rumen. J. Bacteriol., 76, 15–23.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., Small, N., Bouma, C. and Robinson, I. M. (1958c). Characterisation of ruminal anaerobic cellulolytic cocci and Cillobacterium cellulosolvens n. sp. J. Bacteriol., 76, 529–37.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., Robinson, I. M. and Chu, H. (1959). Observations on Bacteroides succinogenes: a ruminal cellulolytic bacterium. J. Dairy Sci., 42, 1831–47.

    Article  CAS  Google Scholar 

  • Bryant, M. P., Barrentine, B. F., Sykes, J. F. et al. (1960). Predominant bacteria in the rumen of cattle on bloat-provoking ladino clover pasture. J. Dairy Sci., 43, 1435–44.

    Article  Google Scholar 

  • Bryant, M. P., Robinson, I. M. and Lindahl. I. L. (1961). A note on the flora and fauna in the rumen of steers fed a feed lot bloat-provoking ration and the effect of penicillin. Appl. Microbiol., 9, 511–15.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. R. and Bryant, M. P. (1966). Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Appl. Microbiol., 14, 794–801.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. R., White, M. P., Bryant, M. P. and Doetsch, R. N. (1965). Specificity of the heme requirement for growth of Bacteroides ruminicola. J. Bacteriol., 90, 1645–54.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. R., Keeney, M., Barton, J. S. and Kelley, J. F. (1973). Sodium and other inorganic growth requirements of Bacteroides amylophilus. J. Bacteriol., 114, 782–9.

    PubMed  CAS  Google Scholar 

  • Campbell, L. L. and Singleton, R. (1986). Desulphotomaculum. In Bergey’s Manual of Systematic Bacteriology, Vol. 2, ed. P. H. A Sneath. Williams & Wilkins, Baltimore, pp. 1200–2.

    Google Scholar 

  • Canale-Parola, E. (1970). Biology of the sugar fermenting sarcinae. Bacteriol. Rev., 34, 84–97.

    Google Scholar 

  • Chen, M. and Wolin, M. J. (1979). Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol., 38, 72–7.

    PubMed  CAS  Google Scholar 

  • Cheng, K.-J. and Costerton, J. W. (1977). Ultrastructure of Butyrivibrio fibrisolvens: a Gram positive bacterium? J. Bacteriol., 129, 1506–12.

    PubMed  CAS  Google Scholar 

  • Cheng, K.-J., Dinsdale, D. and Stewart, C. S. (1979). Maceration of clover and grass leaves by Lachnospira multiparus. Appl. Environ. Microbiol., 38, 723–9.

    CAS  Google Scholar 

  • Cheng, K. J., Stewart, C. S., Dinsdale, D. and Costerton, J. W. (1984). Electron microscopy of bacteria involved in the digestion of plant all walls. Anim. Fd Sci. Technol., 10, 93–120.

    Article  Google Scholar 

  • Chesson, A., Stewart, C. S. and Wallace, R. J. (1982). Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl Environ. Microbiol., 44, 597–603.

    PubMed  CAS  Google Scholar 

  • Chesson, A., Stewart, C. S., Dalgarno, K. and King, T. P. (1986). Degradation of isolated grass mesophyll, epidermis and fibre cell walls in the rumen and by cellulolytic rumen bacteria in axenic culture. J. Appl. Bacteriol., 60, 327–36.

    Google Scholar 

  • Chow, J. M. and Russell, J. B. (1992). The effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol., 58, 1115–20.

    PubMed  CAS  Google Scholar 

  • Clarke, R. T. J. (1979). Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia and Quin’s and Eadie’s Ovals. Appl. Environ. Microbiol., 37, 654–7.

    PubMed  CAS  Google Scholar 

  • Cook, A. R. (1976). The elimination of urease activity in Strepotococcus faecium as evidence for plasmid-coded urease. J. Gen. Microbiol., 92, 49–58.

    PubMed  CAS  Google Scholar 

  • Cook, G. M. and Russell, J. B. (1994). Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance. Appl. Environ. Microbiol., 60, 1942–8.

    PubMed  CAS  Google Scholar 

  • Cook, G. M., Wells, J. E. and Russell, J. B. (1994). Ability of Acidaminococcus fermentans to oxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end product of ruminal fermentation. Appl. Environ. Microbiol., 60, 2533–7.

    PubMed  CAS  Google Scholar 

  • Costilow, R. N. (1981). Biophysical factors in growth. In Manual of Methods for General Bacteriology, ed. P. Gerhardt, R. G. E. Murray, R. N. Costilow et al. ASM, Washington, pp. 66–78.

    Google Scholar 

  • Cotta, M. A. (1988). Amylolytic activity of selected species of ruminal bacteria. Appl. Environ. Microbiol., 54, 772–6.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. (1990). Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria. Appl. Environ. Microbiol., 56, 3867–70.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. (1992). Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl. Environ. Microbiol., 58, 48–54.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. (1993). Utilization of xylooligosaccharides by selected ruminal bacteria. Appl. Environ. Microbiol., 59, 3557–63.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. and Hespell, R. B. (1986). Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 52, 51–8.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A., Wheeler, M. B. and Whitehead, T. R. (1994). Cyclic AMP in ruminal and other anaerobic bacteria. FEMS Microbiol. Lett., 124, 355–60.

    Article  PubMed  CAS  Google Scholar 

  • Counotte, G. H. M., Prins, R. A., Janssen, R. H. A. M. and DeBie, M. J. A. (1981). Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl. Environ. Microbiol., 42, 649–55.

    PubMed  CAS  Google Scholar 

  • Counotte, G. H. M., Lankhorst, A. and Prins, R. A. (1983). Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. J. Anim. Sci., 56, 1222–35.

    PubMed  CAS  Google Scholar 

  • Dawson, K. A., Allison, M. J. and Hartman, P. A. (1980). Isolation and some characteristics of anaerobic oxalate degrading bacteria from the rumen. Appl. Environ. Microbiol., 40, 833–9.

    PubMed  CAS  Google Scholar 

  • Dehority, B. A. (1969). Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol., 99, 189–96.

    PubMed  CAS  Google Scholar 

  • Dehority, B. A. (1977). Cellulolytic cocci isolated from the cecum of guinea pigs. Appl. Environ. Microbiol., 33, 1278–83.

    PubMed  CAS  Google Scholar 

  • Dehority, B. A. (1986). Microbes in the foregut of arctic ruminants. In Control of Digestion and Metabolism in Ruminants, ed. L. P. Milligan, M. L. Grovum and A. Dobson. Reston, Prentice Hall, Englewood Cliffs, New Jersey, pp. 307–25.

    Google Scholar 

  • Dehority, B. A. (1991). Effects of microbial synergism on fibre digestion in the rumen. Proc. Nutr. Soc., 50, 149–59.

    Article  PubMed  CAS  Google Scholar 

  • Dehority, B. A. and Grubb, J. A. (1976). Basal medium for the selective enumeration of rumen bacteria utilising specific energy sources. Appl. Environ. Microbiol., 32, 703–10.

    PubMed  CAS  Google Scholar 

  • Dehority, B. A. and Grubb, J. A. (1980). Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl. Environ. Microbiol., 39, 376–81.

    PubMed  CAS  Google Scholar 

  • Dehority, B. A. and Scott, H. W. (1967). Extent of cellulose and hemicellulose digestion in various forages by pure cultures of rumen bacteria. J. Dairy Sci., 50, 1136–41.

    Article  CAS  Google Scholar 

  • Denger, K. and Schink, B. (1992). Enery conservation by succinate decarboxylation in Veillonella parvula. J. Gen. Microbiol., 138, 967–71.

    CAS  Google Scholar 

  • Dennis, S. M., Nagaraja, T. G. and Bartley, E. E. (1981). Effects of lasalocid or monensin on lactate-producing or—using bacteria. J. Anim. Sci., 52, 418–26.

    PubMed  CAS  Google Scholar 

  • Djordjevic, S., Pace, C. P., Stankovitch, M. T. and Kim, J.-J. P. (1995). Three dimensional structure of butyryl-CoA dehydrogenase from Megasphera elsdenii. Biochemistry, 34, 2163–71.

    Article  PubMed  CAS  Google Scholar 

  • Doerner, K. C., Howard, G. T., Mackie, R. I. and White, B. A. (1992). b-Glucanase expression by Ruminococcus flavefaciens FD1. FEMS Microbiol. Lett., 93, 147–54.

    CAS  Google Scholar 

  • Doerner, K. C., Gardner, R.-M., Schook, L. B. et al. (1994). Inhibition of the exo-b-,4-glucanase from Ruminococcus flavefaciens FD-1 by a specific monoclonal antibody. Enzyme Microb. Technol., 16, 2–9.

    Article  CAS  Google Scholar 

  • Dolfing, J. and Prins, R. A. (1996). Methanogenic ‘food chains’. ASM News, 62, 118–19.

    Google Scholar 

  • Dominguez-Bello, M. G. and Stewart, C. S. (1991). A rumen Clostridium capable of degradation of mimosine, 3(OH)-4-(1H)-pyridine and 2,3 dihydroxypyridine. Syst. Appl. Microbiol., 14, 67–71.

    CAS  Google Scholar 

  • Dore, J. and Bryant, M. P. (1989). Lipid growth requirement and influence of lipid supplement on fatty acid and aldehyde composition of Syntrophococcus sucromutans. Appl. Environ. Microbiol., 55, 927–33.

    PubMed  CAS  Google Scholar 

  • Dore, J. and Bryant, M. P. (1990). Metabolism of one carbon compounds by the rumen acetogen Syntrophococcus sucromutans. Appl. Environ. Microbiol., 56, 984–9.

    CAS  Google Scholar 

  • Dross, F., Geisler, V., Lenger, R. et al. (1992). The quinone-reactive nickel iron hydrogenase of Wolinella succinogenes. Eur. J. Biochem., 206, 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, P. A., White, B. A. and Mackie, R. I. (1992). Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD1. Appl. Environ. Microbiol., 58, 4032–7.

    PubMed  CAS  Google Scholar 

  • Eadie, J. M. (1962). The development of rumen microbial populations in lambs and calves under various conditions of management. J. Gen. Microbiol., 29, 563–78.

    Google Scholar 

  • Edwards, T. and McBride, B. C. (1975). New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol., 29, 540–5.

    PubMed  CAS  Google Scholar 

  • Elsden, S. R., Volcani, B. E., Gilchrist, F. M. C. and Lewis, D. (1956). Properties of a fatty acid forming organism from the rumen of sheep. J. Bacteriol., 72, 681–9.

    Article  PubMed  CAS  Google Scholar 

  • Englehardt, H., Schuster, S. C. and Bauerline, E. (1993). An Archimidean spiral: the basal disk of the Wolinella flagellar motor. Science, 262, 1046–8.

    Article  Google Scholar 

  • Fielding, E. R., Archer, D. B., Coway de Macario, E. and Macario, A. J. L. (1988). Isolation and characterisation of methanogenic bacteria from landfills. Appl. Environ. Microbiol., 54, 835–6.

    PubMed  CAS  Google Scholar 

  • Flint, H. J. and Bisset, J. (1990). Genetic diversity in Selenomonas ruminantium isolated from the rumen. FEMS Microbiol. Ecol., 73, 351–60.

    Article  CAS  Google Scholar 

  • Flint, H. J. and Forsberg, C. W. (1995). Polysaccharide degradation in the rumen – biochemistry and genetics. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, ed. W. V. Engelhardt, S. Leonhard-Marek, G. Breves and D. Gieseke. Ferdinand Enke Verlag, Stuttgart, pp. 43–70.

    Google Scholar 

  • Flint, H. J. and Stewart, C. S. (1987). Antibiotic resistance patterns and plasmids of ruminal strains of Bacteroides ruminicola and Bacteroides multiacidus. Appl. Microbiol. Biotechnol., 26, 450–5.

    CAS  Google Scholar 

  • Flint, H. J. and Thomson, A. M. (1990). Deoxyribonuclease activity in isolated rumen bacteria and rumen fluid. Lett. Appl. Microbiol., 11, 18–21.

    Article  PubMed  CAS  Google Scholar 

  • Flint, H. J., Duncan, S. H. and Stewart, C. S. (1987). Transmissible antibiotic resistance in strains of Escherichia coli isolated from the ovine rumen. Lett. Appl. Microbiol., 5, 47–9.

    Article  Google Scholar 

  • Flint, H. J., Thomson, A. M. and Bisset, J. (1988). Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola. Appl. Environ. Microbiol., 54, 855–60.

    PubMed  CAS  Google Scholar 

  • Flint, H. J., McPherson, C. A., Avgustin, G. and Stewart, C. S. (1990). Use of a cellulase-encoding gene probe to reveal restriction fragment length polymorphisms among ruminal strains of Bacteroides succinogenes. Curr. Microbiol., 20, 63–8.

    Article  CAS  Google Scholar 

  • Flint, H. J., McPherson, C. A. and Martin, J. (1991). Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. J. Gen. Microbiol., 137, 123–9.

    PubMed  CAS  Google Scholar 

  • Flint, H. J., Martin, J., McPherson, C. A. et al. (1993). A bifunctional enzyme, with separate xylanase and b(1,3–1,4) glucanases domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol., 175, 2943–51.

    CAS  Google Scholar 

  • Flint, H. J., Zhang, J.-X., Martin, J. et al (1994a). Relationships of xylanase genes from rumen bacteria. In Genetics, Biochemistry and Biology of Lignocellulose Degradation, MIE Bioforum 93, Tokyo, pp. 188–93.

    Google Scholar 

  • Flint, H. J., Zhang, J.-X. and Martin, J. (1994b). Multiplicity and expression of xylanases in the rumen cellulolytic bacterium Ruminococcus flavefaciens. Curr. Microbiol., 29, 139–43.

    Article  CAS  Google Scholar 

  • Fondevila, M. and Dehority, B. A. (1994). Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially. J. Appl. Bacteriol., 77, 541–8.

    PubMed  CAS  Google Scholar 

  • Fonty, G., Jouany, J.-P., Senaud, J. et al. (1984). The evolution of microflora, microfauna and digestion in the rumen of lambs from birth to 4 months. Can. J. Anim. Sci., 64(Suppl.), 165–6.

    Google Scholar 

  • Forster, R. J., Teather, R. M., Gong, J. and Deng, S.-J. (1996). 16S rRNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate producing anaerobic bacteria from the rumen of short-tailed deer. Lett. Appl. Microbiol., 23, 218–22.

    Article  PubMed  CAS  Google Scholar 

  • Freer, S. N. (1993). Purification and characterization of the extracellular alpha amylase from Streptococcus bovis JB1. Appl. Environ. Microbiol., 59, 1398–402.

    PubMed  CAS  Google Scholar 

  • Fulghum, R. S. and Worthington, J. M. (1984). Superoxide dismutase in ruminal bacteria. Appl. Environ. Microbiol., 48, 675–7.

    PubMed  CAS  Google Scholar 

  • Gardner, R. G., Wells, J. E., Russell, J. B. and Wilson, D. B. (1995). The cellular location of Prevotella ruminicola b, 4-D-endoglucanase and the occurrence in other strains of ruminal bacteria. Appl. Environ. Microbiol., 61, 3288–92.

    PubMed  CAS  Google Scholar 

  • Gasparic, A., Martin, J., Daniel, A. S. and Flint, H. J. (1995). A xylan hydrolase gene cluster in Prevotella ruminicola B14: sequence relationships, synergistic interactions and oxygen sensitivity of a novel enzyme with exoxylanase and b-(l,4)-xylosidase activities. Appl. Environ. Microbiol., 61, 2958–64.

    PubMed  CAS  Google Scholar 

  • Gaudet, G., Forano, E., Dauphin, G. and Delort A.-M. (1992). Futile cycling of glycogen in Fibrobacter succinogenes as shown by in-situ proton NMR and carbon-13-NMR investigation. Eur. J. Biochem., 207, 155–62.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, V., Ullman, R. and Kroger, A. (1994). The direction of the proton exchange associated with the redox reactions of menaquinone during electron transport in Wolinella succinogenes. Biochim. Biophys. Acta, 1184, 219–26.

    Article  CAS  Google Scholar 

  • Gibson, T. (1986). Oscillospira. In Bergey’s Manual of Systematic Bacteriology, Vol. 2, ed. P. A. Sneath. Williams & Wilkins, Baltimore, p. 1207.

    Google Scholar 

  • Gilmour, M., Mitchell, W. J. and Flint, H. J. (1994). Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium. Microbiology, 140, 2077–84.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, M., Mitchell, W. J. and Flint, H. J. (1996). Genetic transfer of lactate-utilizing ability in the rumen bacterium Selenomonas ruminantium. Lett. Appl. Microbiol, 22, 52–6.

    Article  PubMed  CAS  Google Scholar 

  • Glass, T. L. and Sherwood, J. S. (1994). Phosphorylation of glucose by a guanosine-5’-triphosphate (GTP)-dependent glucokinase in Fibrobacter succinogenes subsp. succinogenes S85. Arch. Microbiol., 162, 180–6.

    PubMed  CAS  Google Scholar 

  • Gomez-Alarcon, R. A., O’Dowd, C., Leedle, J. A. Z. and Bryant, M. P. (1982). 1,4-Naphthoquinone and other nutrient requirements ofSuccinivibrio dextrinosolvens. Appl Environ. Microbiol., 44, 346–50.

    PubMed  CAS  Google Scholar 

  • Goodman, H. J. K. and Woods, D. R. (1993). Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J. Gen. Microbiol., 139, 1487–93.

    PubMed  CAS  Google Scholar 

  • Gorris, L. G. M. and Van der Drift, C. (1994). Cofactor contents of methanogenic bacteria reviewed. Biofactors, 4, 139–45.

    PubMed  CAS  Google Scholar 

  • Gradel, C. M. and Dehority, B. A. (1972). Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. Appl Microbiol, 23, 332–40.

    PubMed  CAS  Google Scholar 

  • Greening, R. C. and Leedle, J. A. Z. (1989). Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol, 151, 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Greve, L. C., Labavitch, J. M. and Hungate, R. E. (1984a). a-L-Arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl Environ. Microbiol., 47, 1135–40.

    PubMed  CAS  Google Scholar 

  • Greve, L. C, Labavitch, J. M., Stack, R. J. and Hungate, R. E. (1984b). Murolytic activities of R. albus 8. Appl. Environ. Microbiol., 47, 1141–5.

    PubMed  CAS  Google Scholar 

  • Grubb, J. A. and Dehority, B. A. (1976). Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Appl. Environ. Microbiol., 31, 262–7.

    PubMed  CAS  Google Scholar 

  • Gutierrez, J. (1953). Numbers and characteristics of lactate-utilising organisms in the rumen of cattle. J. Bacteriol., 66, 123–8.

    PubMed  CAS  Google Scholar 

  • Haddock, J. D. and Ferry, J. G. (1993). Initial steps in the anaerobic degradation of 3,4,5 trihydroxybenzoate by Eubacterium oxidoreducens: characterisation of mutants and role of 1,2,3,5, trihydroxybenzene. J. Bacteriol., 175, 669–73.

    PubMed  CAS  Google Scholar 

  • Hamlin, L. J. and Hungate, R. E. (1956). Culture and physiology of a starch-digesting bacterium (Bacteroides amylophilus no. spp.) from the bovine rumen. J. Bacteriol., 72, 548–54.

    PubMed  CAS  Google Scholar 

  • Harborth, P. B. and Hanert, H. H. (1982). Isolation of Selenomonas ruminantium from an aquatic ecosystem. Arch. Microbiol., 132, 135–40.

    Article  CAS  Google Scholar 

  • Hardie, J. M. (1986). Other Streptococci. In Bergey’s Manual of Systematic Bacteriology, Vol. 2, ed. P. H. A. Sneath. Williams & Wilkins, Baltimore, pp. 1068–71.

    Google Scholar 

  • Hausinger, R. P. (1986). Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium. J. Biol. Chem., 261, 7866–70.

    PubMed  CAS  Google Scholar 

  • Heinrichova, K., Wojciechowicz, M. and Ziolecki, A. (1989). The pectinolytic enzyme of Selenomonas ruminantium. J. Appl. Bacteriol., 66, 169–74.

    PubMed  CAS  Google Scholar 

  • Helaszek, C. T. and White, B. A. (1991). Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl. Environ. Microbiol., 57, 64–8.

    PubMed  CAS  Google Scholar 

  • Henderson, C. (1975). The isolation and characterisation of strains of lipolytic bacteria from the ovine rumen. J. Appl. Bacteriol., 39, 101–9.

    PubMed  CAS  Google Scholar 

  • Henderson, C. (1980). The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium. J. Gen. Microbiol., 119, 485–91.

    PubMed  CAS  Google Scholar 

  • Henderson, C. and Hodgkiss, W. (1973). An electron microscopic study of Anaerovibrio lipolytica (strain 5S) and its lipolytic enzyme. J. Gen. Microbiol., 76, 389–93.

    PubMed  CAS  Google Scholar 

  • Henning, P. A. and Van der Walt, A. E. (1978). Inclusion of xylan in a medium for the enumeration of total culturable rumen bacteria. Appl. Environ. Microbiol., 35, 1008–11.

    PubMed  CAS  Google Scholar 

  • Hespell, R. B. (1992). Fermentation of xylans by Butyrivibrio fibrisolvens and Thermoanaerobacter strain B6A: utilization of uronic acids and xylanolytic activites. Curr. Microbiol., 25, 189–95.

    Article  CAS  Google Scholar 

  • Hespell, R. B. and Bryant, M. P. (1981). The genera Butyrivibrio, Succinivibrio, Lachnospira and Selenomonas. In The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. 2, ed. M. P. Starr, H. Stolp, H. G. Truper et al. Springer Verlag, Berlin, pp. 1479–94.

    Google Scholar 

  • Hespell, R. B. and Cotta, M. A. (1995). Degradation and utilization by Butyrivibrio fibrisolvens H17c of xylans with different chemical and physical properties. Appl. Environ. Microbiol., 61, 3042–50.

    PubMed  CAS  Google Scholar 

  • Hespell, R. B. and O’Bryan-Shah, P. J. (1988). Esterase activities in Butyrivibrio fibrisolvens strains. Appl. Environ. Microbiol., 54, 1917–22.

    PubMed  CAS  Google Scholar 

  • Hespell, R. B. and Whitehead, T. R. (1990). Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J. Dairy Sci., 73, 3013–22.

    Article  PubMed  CAS  Google Scholar 

  • Hespell, R. B., Wolf, R. and Bothast, R. J. (1987). Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminai bacteria. Appl. Environ. Microbiol., 53, 2849–53.

    PubMed  CAS  Google Scholar 

  • Hespell, R. B., Kato, K. and Costerton, J. W. (1993). Characterisation of the cell wall of Butyrivibrio species. Can. J. Microbiol., 39, 912–21.

    CAS  Google Scholar 

  • Hino, T. and Kuroda, S. (1993). Presence of lactate racemase and lactate dehydrogenase in Megasphaera elsdenii grown on glucose or lactate. Appl. Environ. Microbiol., 59, 255–9.

    PubMed  CAS  Google Scholar 

  • Hino, T., Shimada, K. and Maruyama, T. (1994). Substrate preference in a strain of Megasphaera elsdenii, a ruminai bacterium and its implications in propionate production and growth competition. Appl. Environ. Microbiol., 60, 1827–31.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. (1969). Rumen bacteria. In Methods in Microbiology, Vol. 3B, ed. J. R. Norris and D. W. Ribbons. Academic Press, London and New York, pp. 133–49.

    Google Scholar 

  • Hobson, P. N. and Howard, B. H. (1969). Microbial transformations. In Handbuch der Tierernahrung, Vol. I. Verlag Paul Parey, Hamburg, pp. 207–54.

    Google Scholar 

  • Hobson, P. N. and MacPherson, M. J. (1954). Some serological and chemical studies on materials extracted from an amylolytic streptococcus from the rumen of sheep. Biochem. J., 57, 145–51.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Mann, S. O. (1961). The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol., 25, 227–40.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N., Mann, S. O. and Oxford, A. E. (1958). Some studies on the occurrence and properties of a large Gram-negative coccus from the rumen. J. Gen. Microbiol., 19, 462–72.

    PubMed  CAS  Google Scholar 

  • Holdeman, L. V., Cato, E. P. and Moore, W. E. C. (1977). Anaerobe Laboratory Manual. Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Holdeman, L. V., Kelley, R. W. and Moore, W. E. C. (1984). Bacteroides. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 604–31.

    Google Scholar 

  • Howard, B. H. and Hungate, R. E. (1976). Desulfovibrio of the sheep rumen. Appl. Environ. Microbiol., 32, 598–602.

    PubMed  CAS  Google Scholar 

  • Howlett, M. R., Mountfort, D. O., Turner, K. W. and Robertson, A. M. (1976). Metabolism and growth yields in Bacteroides ruminicola B14. Appl. Environ. Microbiol., 32, 274–83.

    PubMed  CAS  Google Scholar 

  • Huder, J. B. and Dimroth, P. (1995). Expression of the sodium ion pump methylmalonyl Co A decarboxylase from Veillonella parvula and of mutated enzyme specimens in Escherichia coli. J. Bacteriol., 177, 3623–30.

    PubMed  CAS  Google Scholar 

  • Hudman, J. F. (1984). Glucose-induced morphological variation in Selenomonas ruminantium. FEBS Microbiol. Lett., 22, 201–4.

    CAS  Google Scholar 

  • Hudman, J. F. and Gregg, K. (1989). Genetic diversity among strains of bacteria from the rumen. Curr. Microbiol., 19, 313–18.

    Article  Google Scholar 

  • Hungate, R. E. (1944). Studies on cellulose fermentation 1. The culture and physiology of an anaerobic cellulose digesting bacterium. J. Bacteriol., 48, 499–513.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1947). Studies on cellulose fermentation. III. The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. J. Bacteriol., 53, 631–45.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1950). The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev., 14, 1–49.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1957). Microorganisms in the rumen of cattle fed a constant ration. Can. J. Microbiol., 3, 289–311.

    Article  PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1966). The Rumen and Its Microbes. Academic Press, New York and London.

    Google Scholar 

  • Hungate, R. E. (1969). A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology, Vol. 3B, ed. J. R. Norris and D. W. Ribbons. Academic Press, London and New York, pp. 117–32.

    Google Scholar 

  • Hungate, R. E. and Stack, R. J. (1982). Phenylpropanoic acid: growth factor for Ruminococcus albus. Appl. Environ. Microbiol., 44, 79–83.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., Dougherty, R. W., Bryant, M. P. and Cello, R. M. (1952). Microbiological and physiological changes associated with acute indigestion in sheep. Cornell Vet., 42, 423–49.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., Smith, W., Bauchop, T. et al. (1970). Formate as an intermediate in the rumen fermentation. J. Bacteriol., 102, 389–97.

    PubMed  CAS  Google Scholar 

  • Jalaludin, S., Ho, Y. W., Abdullah, N. and Kudo, H. (1992). Rumen microorganisms of the water-buffalo. Buffalo J., 3, 211–20.

    Google Scholar 

  • Jayne-Williams, D. J. (1979). The bacterial flora of the rumen of healthy and bloating calves. J. Appl. Bacteriol., 47, 271–84.

    PubMed  CAS  Google Scholar 

  • Johns, A. T. (1951). Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J. Gen. Microbiol., 5, 317–25.

    PubMed  CAS  Google Scholar 

  • Johnston, N. C. and Goldfine, H. (1982). Effect of growth temperature on fatty acid and alk-1-enyl group compositions of Veillonella parvula and Megasphaera elsdenii. J. Bacteriol., 149, 567–75.

    PubMed  CAS  Google Scholar 

  • Kaars-Sijpesteijn, A. K. (1951). On Ruminococcus flavefaciens a cellulose decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microbiol., 5, 869–79.

    Google Scholar 

  • Kafkewitz, D. (1975). Improved growth media for Vibrio succinogenes. Appl. Microbiol., 29, 121–2.

    CAS  Google Scholar 

  • Kamio, Y., Poso, H., Terawaki, Y. and Paulin, L. (1986). Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. J. Biol. Chem., 261, 6585–9.

    PubMed  CAS  Google Scholar 

  • Kandler, O. and Hippe, H. (1977). Lack of peptidoglycan in the cell walls of Methanosarcina barkerii. Arch. Microbiol., 118, 57–60.

    Article  Google Scholar 

  • Kelly, W. J., Asmundson, R. V. and Hopcroft, D. F. (1987). Isolation and characterisation of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch. Microbiol., 147, 169–73.

    CAS  Google Scholar 

  • Kepler, C. R., Hirons, K. P., McNeill, J. J. and Tove, S. B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem., 241, 1350–4.

    PubMed  CAS  Google Scholar 

  • Kingsley, V. V. and Horecker, J. F. M. (1973). Growth structure and classification of Selenomonas. Bacteriol. Rev., 37, 479–521.

    PubMed  CAS  Google Scholar 

  • Kistner, A. (1960). An improved method for viable counts of bacteria of the ovine rumen which ferment carbohydrates. J. Gen. Microbiol., 23, 565–76.

    PubMed  CAS  Google Scholar 

  • Klieve, A. Y., Hudman, J. F. and Bauchop, T. (1989). Inducible bacteriophages from rumen bacteria. Appl. Environ. Microbiol., 55, 1630–4.

    PubMed  CAS  Google Scholar 

  • Klieve, A., Gregg, K. and Bauchop, T. (1991). Isolation and characterisation of lytic phages from Bacteroides ruminicola subsp. brevis. Curr. Microbiol., 23, 183–7.

    CAS  Google Scholar 

  • Kopecny, J., Hodrova, B. and Stewart, C. S. (1996). The isolation and characterisation of a rumen chitinolytic bacterium. Lett. Appl. Microbiol., 23, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. O. and Russell, J. B. (1996). How many rumen bacteria really are there? J. Dairy Sci., 79, 1467–75.

    Article  PubMed  CAS  Google Scholar 

  • Krumholz, L. R. and Bryant, M. P. (1986a). Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol., 143, 313–18.

    Article  CAS  Google Scholar 

  • Krumholz, L. R. and Bryant, M. P. (1986b). Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol., 144, 8–14.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., Crawford, R. L., Hemling, M. E. and Bryant, M. P. (1986). A rumen bacterium degrading quercitin and trihydroxybenzenoids with concurrent use of formate or H2. In Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacology and Structure-Activity Relationships, ed. E. Middleton. Liss, New York, pp. 211–14.

    Google Scholar 

  • Krumholz, L. R., Crawford, R. L., Hemling, M. E. and Bryant, M. P. (1987). Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol., 169, 1886–90.

    PubMed  CAS  Google Scholar 

  • Krumholz, L. R., Bryant, M. P., Brulla, W. J. etal. (1993). Proposal of Quinella ovalis gen. nov. sp. nov., based on phylogenetic analysis. Int. J. Syst. Bacteriol., 43, 293–6.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara, Y., Eadie, J. M., Hobson, P. N. and Mann, S. O. (1968). Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol., 57, 267–88.

    Google Scholar 

  • Latham, M. J., Sharpe, E. and Weiss, N. (1979). Anaerobic cocci from the bovine alimentary tract, the amino acids of their cell wall peptidoglycans and those of various species of anaerobic Streptococcus. J. Appl. Bacteriol., 47, 209–21.

    PubMed  CAS  Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. L. and Harris, P. J. (1978b). Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (L. perenne). Appl. Environ. Microbiol., 35, 166–73.

    Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. L. and Harris, P. J. (1978b). Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol., 35, 156–65.

    PubMed  CAS  Google Scholar 

  • Leatherwood, J. M. and Sharma, M. P. (1972). Novel anaerobic cellulolytic bacterium. J. Bacteriol., 110, 751–3.

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z. and Hespell, R. B. (1980). Differential carbohydrate media and anaerobic replica plating technique in delineating carbohydrate utilising subgroups in rumen bacterial populations. Appl. Environ. Microbiol., 39, 709–19.

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z., Bryant, M. P. and Hespell, R. B. (1982). Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low—or high-forage diets. Appl. Environ. Microbiol., 44, 402–12.

    PubMed  CAS  Google Scholar 

  • Lenski, R. E. (1995). Evolution in experimental populations of bacteria. In Population Genetics of Bacteria, ed. S. Baumberg, J. P. W. Young, E. M. H. Wellington and J. R. Saunders. SGM Symposium Vol. 52, Cambridge, Cambridge University Press, pp. 193–216.

    Google Scholar 

  • Lin, L.-L. and Thomson, J. A. (1991). An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol. Lett., 84, 197–204.

    Article  CAS  Google Scholar 

  • Loesche, W. J. (1969). Oxygen sensitivity of various anaerobic bacteria. Appl. Microbiol., 18, 723–7.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Greening, R. and Ferry, J. G. (1984). Rapidly growing rumen methanogenic organism that synthesises coenzyme M and has a high affinity for formate. Appl Environ. Microbiol., 48, 81–7.

    PubMed  CAS  Google Scholar 

  • Maas, L. K. and Glass, T. L. (1991). Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes. Can. J. Microbiol., 37, 141–7.

    Article  PubMed  CAS  Google Scholar 

  • Macy, J. M. and Probst, J. (1979). The biology of gastrointestinal bacteroides. Annu. Rev. Microbiol., 33, 561–94.

    Article  PubMed  CAS  Google Scholar 

  • Macy, J. M., Schroder, I., Thauer, R. K. and Kroger, A. (1986). Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulphur as energy sources. Arch. Microbiol., 144, 147–50.

    Article  CAS  Google Scholar 

  • Maluzynska, G. M. and Janota-Bassalik, L. (1974). A cellulolytic rumen bacterium Micromonospora ruminantium. J. Gen. Microbiol., 82, 57–65.

    Google Scholar 

  • Mann, S. O. and Oxford, A. E. (1954). Studies of some presumptive lactobacilli isolated from the rumens of young calves. J. Gen. Microbiol., 11, 83–90.

    PubMed  CAS  Google Scholar 

  • Mannarelli, B. M. (1988). Deoxyribonucleic acid relatedness among strains of Butyrivibrio fibrisolvens. Int. I. Syst. Bacteriol, 38, 340–7.

    Article  Google Scholar 

  • Mannarelli, B. M., Stack, R. J., Lee, D. and Ericsson, L. (1990). Taxonomic relatedness of Butyrivibrio, Lachnospira, Roseburia and Eubacterium species as determined by DNA hybridization and extracellular polysaccharide analysis. Int. J. Syst. Bacteriol., 40, 370–8.

    Article  CAS  Google Scholar 

  • Mannarelli, B. M., Ericsson, L. D., Lee, D. and Stack, R. J. (1991). Taxonomic relationships among strains of the anaerobic bacterium Bacteroides ruminicola determined by DNA and extracellular polysaccharide analysis. Appl Environ. Microbiol., 57, 2975–80.

    PubMed  CAS  Google Scholar 

  • Marounek, M., Fliegorova, K. and Bartos, S. (1989). Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl Environ. Microbiol., 55, 1570–3.

    PubMed  CAS  Google Scholar 

  • Martin, S. A. (1992). Effects of extracellular pH and phenolic monomers on glucose uptake by Fibrobacter succinogenes S85.Lett. Appl. Microbiol., 15, 26–8.

    Article  CAS  Google Scholar 

  • Marvin-Sikkema, F. D., Richardson, A. J., Stewart, C. S. et al. (1990). Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol., 56, 3793–7.

    PubMed  CAS  Google Scholar 

  • McAllister, T. A., Cheng, K. J., Rode, L. M. and Forsberg, C. W. (1990). Digestion of barley, maize and wheat by selected species of ruminal bacteria. Appl. Environ. Microbiol., 56, 3146–53.

    PubMed  CAS  Google Scholar 

  • McInerney, M. J., Mackie, R. I. and Bryant, M. P. (1981). Syntrophic association of a butyrate degrading bacterium and Methanosarcina enriched from bovine rumen fluid. Appl. Environ. Microbiol., 41, 826–8.

    PubMed  CAS  Google Scholar 

  • McKain, N., Wallace, R. J. and Watt, N. D. (1992). Selective isolation of bacteria with dipeptidyl aminopeptidase type I activity from the sheep rumen. FEMS Microbiol. Lett., 95, 169–74.

    Article  CAS  Google Scholar 

  • Meinhardt, S. W. and Glass, T. L. (1994a). NADH-linked fumarate reductase and NADH dehydrogenase activities in Fibrobacter succinogenes. Curr. Microbiol., 28, 247–51.

    Article  CAS  Google Scholar 

  • Meinhardt, S. W. and Glass, T. L. (1994b). Characterization of the NADH dehydrogenase and fumarate reductase of Fibrobacter succinogenes subsp.succinogenes S85.Arch. Microbiol., 162, 329–34.

    Article  Google Scholar 

  • Melville, S. B., Michel, T. A. and Macy, J. M. (1988a). Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium. J. Bacteriol., 170, 5298–304.

    PubMed  CAS  Google Scholar 

  • Melville, S. B., Michel, T. A. and Macy, J. M. (1988b). Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture. J. Bacteriol., 170, 5305–11.

    PubMed  CAS  Google Scholar 

  • Meynell, G. G. and Meynell, E. (1970). Theory and Practice in Experimental Bacteriology. Cambridage University Press, Cambridge.

    Google Scholar 

  • Michel, T. A. and Macy, J. M. (1990). Ferredoxin from Selenomonas ruminantium. Arch. Microbiol., 153, 518–20.

    Article  CAS  Google Scholar 

  • Miller, T. L. (1978). The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch. Microbiol., 117, 145–52.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L. (1995). Ecology of methane production and hydrogen sinks in the rumen. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, ed. W. V. Engelhardt, S. Leonhard-Marek, G. Breves and D. Gieseke. Ferdinand Enke Verlag, Germany, pp. 317–32.

    Google Scholar 

  • Miller, T. L. and Wolin, M. J. (1995). Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen utilising acetogen. Appl. Environ. Microbiol., 61, 3832–5.

    PubMed  CAS  Google Scholar 

  • Miller, T. L., Wolin, M. J., Zhao, H. and Bryant, M. P. (1986). Characteristics of methanogens isolated from bovine rumen. Appl. Environ. Microbiol., 51, 201–2.

    PubMed  CAS  Google Scholar 

  • Minato, H. and Suto, T. (1981). Technique for fractionation of bacteria in rumen microbial ecosystem. IV. Attachment of rumen bacteria to cellulose powder and elution of bacteria attached to it. J. Gen. Appl. Microbiol., 27, 21–31.

    Article  Google Scholar 

  • Miron, J. and Ben Ghedelia, D. (1993). Digestion of structural polysaccharides of Panicum and vetch hays by the rumen bacterial strains Fibrobacter succinogenes BL2 and Butyrivibrio fibrisolvens Dl. Appl. Microbiol. Biotechnol., 39, 756–9.

    Article  CAS  Google Scholar 

  • Miron, J., Yokoyama, M. T. and Lamed, R. (1989). Bacterial structures involved in lucerne cell wall degradation by pure culture of cellulolytic rumen bacteria. Appl. Microbiol. Biotechnol., 32, 218–22.

    Article  Google Scholar 

  • Mitsuoka, T. (1969). Vergliechende untersuchungen über die bifidobakterien aus dem verdauungstrakt von menschen und tieren. Zentralbl. Bakteriol. Parasitenkd. Infektronsker. Hyg. Abt. I: Orig., 210, 52.

    CAS  Google Scholar 

  • Mitsuoka, T., Torada, A., Watanabe, K. and Uchida, K. (1974). Bacteroides multiacidus, a new species from the faeces of humans and pigs. Int. J. Syst. Bacteriol., 24, 35–41.

    Article  Google Scholar 

  • Miyagawa, E. (1982). Cellular fatty acid and fatty aldehyde composition of rumen bacteria. J. Gen. Appl. Microbiol., 28, 389–408.

    Article  CAS  Google Scholar 

  • Miyagawa, E., Azuma, R. and Suto, T. (1979). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J. Gen. Appl. Microbiol., 25, 41–51.

    Article  CAS  Google Scholar 

  • Moir, R. J. and Masson, M. (1952). An illustrated scheme for the microscopic identification of the rumen microorganisms of sheep. J. Pathol. Bacteriol., 64, 343–50.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, L., Flesher, B. and Stahl, D. A. (1988). Transfer of Bacteroides succinogenes Hungate to new genus as Fibrobacter succinogenes new combination and description of Fibrobacter intestinalis new species. Int. J. Syst. Bacteriol., 38, 430–5.

    Article  Google Scholar 

  • Moonen, C. T. W. Scheek, R. M., Boelens, R. and Miiller, F. (1984). The use of two-dimensional nuclear magnetic resonance spectroscopy and two-dimensional difference spectra in the elucidation of the active center of Megasphaera elsdenii flavodoxin. Eur. J. Biochem., 141, 323–30.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W. E. C. and Holdeman-Moore, L. V. (1986). Eubacterium. In Bergey’s Manual of Systematic Bacteriology, Vol. 2, ed. P. H. A. Sneath. Williams & Wilkins, Baltimore, pp. 153–73.

    Google Scholar 

  • Morehead, M. C. and Dawson, K. A. (1992). Some growth and metabolic characteristics of monensin-sensitive and monensin-resistant strains of Prevotella (Bacteroides) ruminicola. Appl. Environ. Microbiol., 58, 1617–23.

    PubMed  CAS  Google Scholar 

  • Morris, E. J. (1984). Degradation of the intact plant cell wall of subtropical and tropical herbage by rumen bacteria. In Herbivore Nutrition in the Subtropics and Tropics, ed. F. M. C. Gilchrist and R. I. Mackie. The Science Press, South Africa, pp. 378–95.

    Google Scholar 

  • Morris, E. J. and Cole, C. J. (1987). Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus. J. Gen. Microbiol., 133, 1023–32.

    CAS  Google Scholar 

  • Morris, E. J. and Van Gylswyk, N. P. (1980). Comparison of the action of rumen bacteria on cell walls of Eragrostis tef. J. Agric. Sci., 95, 313–23.

    Article  CAS  Google Scholar 

  • Morrison, M., Mackie, R. I. and Kistner, A. (1990). 3-Phenylpropanoic acid improves the affinity of Ruminococcus albus for cellulose in continuous cultures. Appl. Environ. Microbiol., 56, 3220–2.

    PubMed  CAS  Google Scholar 

  • Mueller, R. E., Asplund, J. M. and Lanotti, E. L. (1984). Successive changes in the epimural bacterial community of young lambs as revealed by scanning electron microscopy. Appl. Environ. Microbiol., 47, 715–23.

    PubMed  CAS  Google Scholar 

  • Mulder, R., Teixeira de Mattos, M. J. and Neijssel, O. M. (1989). The mechanism of aggregate formation by Selenomonas ruminantium. Appl. Microbiol. Biotechnol., 32, 350–5.

    Article  CAS  Google Scholar 

  • Murray, R. G. E. (1984). Lampropedia. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 402–6.

    Google Scholar 

  • Nelms, L. F., Odelson, D. A., Whitehead, T. R. and Hespell, R. B. (1995). Differentiation of ruminal and human Streptococcus bovis strains by DNA homology and 16s rRNA probes. Curr. Microbiol., 31, 294–300.

    Article  PubMed  CAS  Google Scholar 

  • Nili, N. and Brooker, J. D. (1995). A defined medium for rumen bacteria and identification of strains impaired in de novo synthesis of certain amino acids. Lett. Appl. Microbiol., 21, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Odenyo, A. A., Mackie, R. I., Stahl, D. A. and White B. A. (1994). The use of 16S rRNA-targetted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol., 60, 3688–96.

    PubMed  CAS  Google Scholar 

  • Ogimoto, K. and Imai, S. (1981). Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • O’Herrin, S. M. and Kenealy, W. R. (1993). Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl. Environ. Microbiol., 59, 748–55.

    PubMed  Google Scholar 

  • Ohmiya, K., Takeuchi, M., Chen, W. et al. (1986). Anaerobic reduction of ferulic acid to dihydroferulic acid by Wolinella succinogenes from cow rumen. Appl. Microbiol. Biotechnol., 23, 274–9.

    Article  CAS  Google Scholar 

  • Olson, K. D. (1992). Modified bottle plate for the cultivation of strict anaerobes. J. Microbiol. Methods, 14, 267–9.

    Article  Google Scholar 

  • Oppermann, R. A., Nelson, W. O. and Brown, R. E. (1961). In vivo studies of methanogenesis in the bovine rumen: dissimilation of acetate. J. Gen. Microbiol., 25, 103–11.

    PubMed  CAS  Google Scholar 

  • Orpin, G. C. (1972). The culture of the rumen organism Eadie’s oval in vitro. J. Gen. Microbiol., 70, 321–9.

    CAS  Google Scholar 

  • Orpin, G. C. (1976). The characterisation of the rumen bacterium Eadie’s oval Magnoovum gen. nov. eadii sp. nov. Arch. Microbiol., 111, 155–9.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, J. M. and Dehority, B. A. (1989). Synergism in degradation and utilization of intact forage cellulose, hemicellulose and pectin by three pure cultures of ruminal bacteria. Appl. Environ. Microbiol., 55, 2247–50.

    PubMed  CAS  Google Scholar 

  • Paster, B. J. (1991). Phylogenetic analysis of the spirochaetes. J. Bacteriol., 173, 6101–9.

    PubMed  CAS  Google Scholar 

  • Paster, B. J. and Canale-Parola, E. (1982). Physiological diversity of rumen spirochaetes. Appl. Environ. Microbiol., 43, 686–93.

    PubMed  CAS  Google Scholar 

  • Paster, B. J. and Canale-Parola, E. (1985). Treponema saccharophilum sp. nov., a large pectinolytic spirochaete from the bovine rumen. Appl. Environ. Microbiol., 50, 212–19.

    PubMed  CAS  Google Scholar 

  • Paster, B. J., Stackebrandt, E., Hespell, R. B. et al. (1984). The phylogeny of the spirochaetes. Syst. Appl. Microbiol., 5, 337–51.

    CAS  Google Scholar 

  • Paster, B. J., Ludwig, W., Weisburg, W. G. et al. (1985). A phylogenetic grouping of the Bacteroides, Cytophagas and certain Flavobacteria. Syst. Appl. Microbiol., 6, 34–42.

    CAS  Google Scholar 

  • Paster, B., Russell, J. B., Yang, C. M. et al. (1993). Phylogeny of ammonia-producing rumen bacteria Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum. Int. J. Syst. Bacteriol., 43, 107–11.

    Article  PubMed  CAS  Google Scholar 

  • Paster, B. J., Dewhirst, F. E., Olsen, J. et al (1995). Gram-negative anaerobes: 16S rRNA sequences, phylogeny and DNA probes. In Medical and Dental Aspects of Anaerobes, ed. B. I. Duerden, W. G. Wade, J. S. Brazier et al Science Reviews, Northwood, pp. 373–86.

    Google Scholar 

  • Patterson, J. A. and Hespell, R. B. (1979). Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr. Microbiol., 3, 79–83.

    Article  CAS  Google Scholar 

  • Patterson, J. A. and Hespell, R. B. (1985). Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens. Appl. Environ. Microbiol., 50, 1014–20.

    PubMed  CAS  Google Scholar 

  • Pavlostathis, S. G., Miller, T. L. and Wolin, M. J. (1990). Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl. Microbiol. Biotechnol, 33, 109–16.

    Article  CAS  Google Scholar 

  • Paynter, M. J. B. and Hungate, K. E. (1968). Characterisation of Methanobacterium mobilis sp. n., isolated from the bovine rumen. J. Bacteriol., 95, 1943–51.

    PubMed  CAS  Google Scholar 

  • Pazur, J. H. and Forsberg, L. S. (1978). Determination of the sugar sequences and the glycosidic bond arrangements of immunogenic heteroglycans. Carbohydrate Res., 60, 167–78.

    Article  CAS  Google Scholar 

  • Pestka, J. J. and Delwiche, E. A. (1983). An alternative pathway for 3-phosphoglycerate generation in Veillonella. Can. J. Microbiol., 29, 218–24.

    Article  PubMed  CAS  Google Scholar 

  • Pettipher, G. L. and Latham, M. J. (1979). Characteristics of enzymes produced by Ruminococcus flavefaciens which degrade plant cell walls. J. Gen. Microbiol., 110, 21–7.

    CAS  Google Scholar 

  • Phillips, B. A., Latham, M. J. and Sharpe, M. E. (1975). A method for freeze drying rumen bacteria and other strict anaerobes. J. Appl. Bacteriol., 38, 319–22.

    PubMed  CAS  Google Scholar 

  • Pittman, K. A. and Bryant, M. P. (1964). Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol., 88, 401–10.

    PubMed  CAS  Google Scholar 

  • Prescott, J. M., Ragiand, R. S. and Stutts, A. L. (1957). Effects of carbon dioxide on the growth of Streptococcus bovis in the presence of various amino acids. J. Bacteriol., 73, 133–8.

    Article  PubMed  CAS  Google Scholar 

  • Preston, J. F., Rice, J. D., Chow, M. C. and Brown, B. J. (1991). Kinetic comparisons of trimer-generating pectate and alginate lyases by reversed-phase ion-pair liquid chromatography. Carbohydrate Res., 215, 147–57.

    Article  CAS  Google Scholar 

  • Prins, R. A. (1971). Isolation, culture and fermentation characteristics of Selenomonas ruminantium var. bryanti var. n. from the rumen of sheep. J. Bacteriol., 105, 820–5.

    PubMed  CAS  Google Scholar 

  • Prins, R. A. (1984). Anaerovibrio. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 653–5.

    Google Scholar 

  • Prins, R. A., van Vught, F., Hungate, R. E. and van Vorstenbosch, C. J. A. H. V. (1972). A comparison of strains of Eubacterium cellulosolvens from the rumen. Ant. van Leeuwen., 38, 153–61.

    Article  CAS  Google Scholar 

  • Prins, R. A., Lankhorst, A., van der Meer, P. and van Nevel, C. J. (1975). Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Ant. van Leeuwen., 41, 1–11.

    Article  CAS  Google Scholar 

  • Rainey, F. A. and Janssen, P. H. (1995). Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol. Lett., 129, 69–74.

    PubMed  CAS  Google Scholar 

  • Rainey, F. A. and Stackebrandt, E. (1993). 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol. Lett., 113, 125–8.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, L., Stromley, J. M., Rittman, B. E. and Stahl, D. A. (1994). Group-specific 16S rRNA hybridisation probes to describe natural communities of methanogens. Appl. Environ. Microbiol., 60, 1232–40.

    PubMed  CAS  Google Scholar 

  • Rasmussen, M., Gray, W. C., Casey, T. A. and Whipp, S. C. (1993). Rumen contents as a reservoir of enterohaemorrhagic Escherichia coli. FEMS Microbiol. Lett., 144, 79–84.

    Article  Google Scholar 

  • Reddy, C. A. and Bryant, M. P. (1977). Deoxyribonucleic acid base composition of certain species of the genus Bacteroides. Can J. Microbiol., 23, 1252–6.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, I. M. (1984). Anaeroplasma. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 787–90.

    Google Scholar 

  • Robinson, I. M. and Allison, M. J. (1975). Transfer of Acholeplasma bactoclasticum Robinson and Hungate to the genus Anaeroplasma (Anaeroplasma bactoclasticum) Robinson and Hungate comb, nov.: emended description of the species. Int. J. Syst. Bacteriol., 25, 182–6.

    Article  Google Scholar 

  • Robinson, I. M., Allison, M. J. and Hartman, P. A. (1975). Anaeroplasma abactoclasticum gen. gov. sp. nov: an obligately anaerobic mycoplasma from the rumen. Int. J. Syst. Bacteriol., 25, 173–81.

    Article  Google Scholar 

  • Robinson, J. P. and Hungate, R. E. (1973). Acholeplasma bactoclasticum sp. nov., an anaerobic mycoplasma from the bovine rumen. Int. J. Syst. Bacteriol., 23, 171–81.

    Article  Google Scholar 

  • Roger, Y., Fonty, G., Komisarczuk-Bony, S. and Gouet, P. (1990). Effects of physicochemical factors on the adhesion to cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp.succinogenes. Appl. Environ. Microbiol., 56, 3081–7.

    PubMed  CAS  Google Scholar 

  • Rogers, M. J., Simmons, J., Walker, R. T. et al. (1985). Construction of the mycoplasma evolutionary tree from 5s ribosomal RNA sequence data. Proc. Natl. Acad. Sci. USA, 82, 1160–4.

    Article  PubMed  CAS  Google Scholar 

  • Rogosa, M. (1984). Anaerobic Gram-negative cocci. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 680–5.

    Google Scholar 

  • Rogosa, M. and Bishop, F. S. (1964). The genus Veillonella. II. Nutritional studies. J. Bacteriol., 87, 574–80.

    PubMed  CAS  Google Scholar 

  • Rouviere, P. E. and Wolfe, R. S. (1988). Novel biochemistry of methanogenesis. J. Biol. Chem., 263, 7913–16.

    PubMed  CAS  Google Scholar 

  • Rowe, J. B., Loughnan, M. L., Nolan, J. V. and Leng, R. A. (1979). Secondary fermentation in the rumen of a sheep given a diet based on molasses. Br. J. Nutr., 41, 393–7.

    Article  PubMed  CAS  Google Scholar 

  • Rumney, C. J., Duncan, S. H., Henderson, C. and Stewart, C. S. (1995). Isolation and characteristics of a wheatbran-degrading Butyrivibrio from human faeces. Lett. Appl. Microbiol., 20, 232–6.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. (1983). Fermentation of peptides by Bacteroides ruminicola B14. Appl. Environ. Microbiol., 45, 1566–74.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1985a). Fermentation of cellodextrins by cellulolytic and non-cellulolytic rumen bacteria. Appl. Environ. Microbiol., 49, 572–6.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1985b). Enrichment and isolation of rumen bacteria that reduce trans-aconitic acid to tricarballylic acid. Appl. Environ. Microbiol., 49, 120–6.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1990). Low affinity high capacity system of glucose transport in the ruminal bacterium Streptococcus bovis: evidence for a mechanism of facilitated diffusion. Appl. Environ. Microbiol., 56, 3304–7.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1991a). Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. Appl. Environ. Microbiol., 57, 255–9.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1991b). Intracellular pH of acid-tolerant rumen bacteria. Appl. Environ. Microbiol., 57, 3383–4.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1993). Glucose toxicity in Prevotella ruminicola: methyl glyoxal accumulation and its effect on membrane physiology. Appl. Environ. Microbiol., 59, 2844–50.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Baldwin, R. A. (1978). Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl. Environ. Microbiol., 36, 319–29.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Dombrowski, D. B. (1980). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol., 39, 604–10.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Hino, T. (1985). Regulation of lactate production in Streptococcus bovis: a spiralling effect that contributes to rumen acidosis. J. Dairy Sci., 68, 1712–21.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. and Robinson, P. H. (1984). Composition and characteristics of strains of Streptococcus bovis. J. Dairy Sci., 67, 1525–31.

    Article  PubMed  CAS  Google Scholar 

  • Saluzzi, L. (1993). Ecophysiology of cellulolytic bacteria in the rumen. PhD thesis, Aberdeen.

    Google Scholar 

  • Saluzzi, L., Smith, A. and Stewart, C. S. (1993). Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes. J. Gen. Microbiol., 139, 2865–73.

    PubMed  CAS  Google Scholar 

  • Samah, O. A. and Wimpenny, J. W. T. (1982). Some effects of oxygen on the physiology of Selenomonas ruminantium WPL/151/1 grown in continuous culture. J. Gen. Microbiol., 128, 355–60.

    CAS  Google Scholar 

  • Satoh, E., Niimaura, Y., Uchimura, T. et al. (1993). Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli. Appl. Environ. Microbiol., 59, 3669–73.

    PubMed  CAS  Google Scholar 

  • Scardovi, V. (1981). The genus Bifidobacterium. In The Prokaryokes: A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. 2, ed. M. P. Starr, H. Stolp, H. G. Truper et al Springer Verlag, Berlin, pp. 1951–61.

    Google Scholar 

  • Scardovi, V. (1986). Genus Bifidobacterium. In Bergey’s Manual of Systematic Bacteriology, Vol. 2, ed. P. H. A. Sneath. Williams & Wilkins, Baltimore, pp. 1418–34.

    Google Scholar 

  • Scardovi, V., Trovatelli, L. D., Crociani, F. and Sgorbati, B. (1969). Bididobacteria in bovine rumen. New species of the genus Bifidobacterium: B. globosum n. sp. and B. ruminale n. sp. Arch. Microbiol., 68, 278–94.

    CAS  Google Scholar 

  • Schaefer, D. M., Davis, C. L. and Bryant, M. P. (1980). Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci., 63, 1249–63.

    Article  Google Scholar 

  • Scheifinger, C. C., Linehan, B. and Wolin, M. J. (1975). H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol., 29, 480–3.

    PubMed  CAS  Google Scholar 

  • Schuster, S. C., Bauer, M., Kellermann, J. et al (1994). Nucleotide sequence of the Wolinella succinogenes flagellin, which contains in the antigenic domain two conserved regions also present in Campylobacter spp. and Helicobacter pylori. J. Bacteriol., 176, 5151–5.

    PubMed  CAS  Google Scholar 

  • Sebald, M. and Petit, J.-C. (1994). Laboratory Methods: Anaerobic Bacteria and their Identification. Institut Pasteur, Paris.

    Google Scholar 

  • Sewell, G. W., Aldrich, H. E., Williams, D. etal. (1988). Isolation and characterisation of xylandegrading strains of Butyrivibrio fibrisolvens from a Napier grass-fed anaerobic digester. Appl. Environ. Microbiol., 54, 1085–90.

    PubMed  CAS  Google Scholar 

  • Shah, H. N. and Collins, M. D. (1983). Genus Bacteroides: a chemotaxonomical perspective. J. Appl. Bacteriol., 55, 403–16.

    PubMed  CAS  Google Scholar 

  • Shah, H. N. and Collins, D. M. (1990). Prevotella, new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol., 40, 205–8.

    Article  PubMed  CAS  Google Scholar 

  • Shane, B. S., Gouws, L. and Kistner, A. (1969). Cellulolytic bacteria occurring in the rumen of sheep conditioned to low protein Teff hay. J. Gen. Microbiol., 55, 445–7.

    PubMed  CAS  Google Scholar 

  • Sharak-Genthner, B. R., Davis, C. L. and Bryant, M. P. (1981). Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol and H2-CO2 using species. Appl. Environ. Microbiol., 42, 12–19.

    Google Scholar 

  • Sharpe, M. E., Latham, M. J., Garvie, E. I. et al. (1973). Two new species of Lactobacillus isolated from the rumen, Lactobacillus ruminis sp. nov. and Lactobacillus vitulinus sp. nov. J. Gen. Microbiol., 77, 37–49.

    PubMed  CAS  Google Scholar 

  • Silley, P. (1985). A note on the pectinolytic enzymes of Lachnospira multiparus. J. Appl. Bacteriol., 58, 145–50.

    CAS  Google Scholar 

  • Silley, P. (1986). The production and properties of a crude pectin lyase from Lachnospira multiparus. Lett. Appl. Microbiol., 2, 29–31.

    Article  CAS  Google Scholar 

  • Slyter, L. L., Kern, D. L. and Weaver, J. M. (1976). Effect of pH on ruminal lactic acid utilisation and accumulation in vitro. J. Anim. Sci., 43, 333–4.

    Google Scholar 

  • Smibert, R. M. (1984). Treponema. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 49–57.

    Google Scholar 

  • Smith, R. H. (1974). Kale poisoning. Annual Report of the Rowett Research Institute (Aberdeen) 30, 112–31.

    Google Scholar 

  • Sowers, K. R. (1995). Methanogenic Archaea: an overview. In Archaea, A Laboratory Manual. Methanogens, ed. K. R. Sowers and H. J. Schreier. Cold Spring Harbor Laboratory Press, Plainview, pp. 3–13.

    Google Scholar 

  • Sowers, K. R. and Schreier, H. J. (eds) (1995). Archaea, A Laboratory Manual. Methanogens. Cold Spring Harbor Laboratory Press, Plainview. NY.

    Google Scholar 

  • Stack, R. J. (1988). Neutral sugar composition of extracellular polysaccharides produced by strains of Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 54, 878–83.

    PubMed  CAS  Google Scholar 

  • Stack, R. J. and Cotta, M. A. (1986). Effect of 3-phenylpropanoic acid on growth of and cellulose utilisation by cellulolytic rumen bacteria. Appl. Environ. Microbiol., 52, 209–10.

    PubMed  CAS  Google Scholar 

  • Stack, R. J. and Hungate, R. E. (1984). Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8. Appl. Environ. Microbiol., 48, 218–23.

    PubMed  CAS  Google Scholar 

  • Stack, R. J., Hungate, R. E. and Opsahl, W. P. (1983). Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl. Environ. Microbiol., 46, 539–44.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E. and Hippe, H. (1986). Transfer of Bacteroides amylophilus to a new genus Ruminobacter gen. nov.Syst. Appl. Microbiol., 8, 204–7.

    Google Scholar 

  • Stackebrandt, E., Pohla, H., Kroppenstedt, R. et al. (1985). 16S RNA analysis of Sporomusa, Selenomonas and Megasphaera: on the phylogenetic origin of Gram-positive Eubacteria. Arch. Microbiol., 143, 270–6.

    Article  CAS  Google Scholar 

  • Stanton, T. B. (1980). Glucose metabolism of Treponema bryantii, an anaerobic rumen spirochaete. Can. J. Microbiol., 30, 526–31.

    Article  Google Scholar 

  • Stanton, T. B. Canale-Parola, E. (1979). Enumeration and selective isolation of rumen spirochaetes. Appl. Environ. Microbiol., 38, 965–73.

    PubMed  CAS  Google Scholar 

  • Stanton, T. B. and Canale-Parola, E. (1980). Treponema bryantii sp. nov., a rumen spirochaete that interacts with cellulolytic bacteria. Arch. Microbiol., 127, 145–56.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, E. B., Robinson, I. M. and Barile, M. F. (1985). Nucleic-acid relationships among the anaerobic Mycoplasmas. J. Gen. Microbiol., 131, 1223–8.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S. (1992). Lactic acid bacteria in the rumen. In The Lactic Acid Bacteria, Vol. 1. The Lactic Acid Bacteria in Health and Disease, ed. B. J. B. Wood. Elsevier, New York, pp. 49–68.

    Chapter  Google Scholar 

  • Stewart, C. S. and Duncan, S. H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. J. Gen. Microbiol., 131, 427–35.

    CAS  Google Scholar 

  • Stewart, C. S. and Flint, H. J. (1989). Bacteroides (Fibrobacter) succinogenes, a cellulolytic anaerobic bacterium from the gastrointestinal tract. Appl. Microbiol. Biotechnol., 30, 433–9.

    CAS  Google Scholar 

  • Stewart, C. S., Dinsdale, D., Cheng, K.-J. and Paniagua, C. (1979). The digestion of straw in the rumen. In Straw Decay and its Effect on Disposal and Utilisation, ed. E. Grossbard. Wiley, Chichester, pp. 123–30.

    Google Scholar 

  • Stewart, C. S., Paniagua, C., Dinsdale, D. et al. (1981). Selective isolation and characteristics of Bacteroides succinogenes from the rumen of a cow. Appl. Environ. Microbiol., 41, 504–10.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S., Fonty, G. and Gouet, P. (1988). The establishment of rumen microbial communities. Anim. Feed Sci. Technol., 21, 69–97.

    Article  Google Scholar 

  • Stewart, C. S., Duncan, S. H., McPherson, C. A. et al. (1990). The implications of the loss and regain of cotton-degrading activity for the degradation of rice straw by Ruminococcus flavefaciens 007.J. Appl. Bacteriol., 68, 349–56.

    Google Scholar 

  • Stewart, C. S., Duncan, S. H., Richardson, A. J. et al. (1992). The inhibition of fungal cellulolysis by cell free preparations from ruminococci. FEMS Microbiol. Lett., 76, 83–7.

    Article  PubMed  CAS  Google Scholar 

  • Strobel, H. J. (1992). Vitamin B12 dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl. Environ. Microbiol., 58, 2331–3.

    PubMed  CAS  Google Scholar 

  • Strobel, H. J. (1993). Pentose accumulation and transport by the ruminal bacterium Prevotella ruminicola. Arch. Microbiol., 159, 465–71.

    Article  PubMed  CAS  Google Scholar 

  • Strobel, H. J. and Dawson, K. A. (1993). Xylan and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens. FEMS Microbiol. Lett., 113, 291–6.

    Article  PubMed  CAS  Google Scholar 

  • Strobel, H. J. and Russell, J. B. (1991). Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength. Appl. Environ. Microbiol., 57, 248–54.

    PubMed  CAS  Google Scholar 

  • Tanner, A. C. R. and Socransky, S. S. (1984). Wolinella. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg and J. G. Holt. Williams & Wilkins, Baltimore, pp. 646–50.

    Google Scholar 

  • Teather, R. M. (1982b). Isolation of plasmid DNA from Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 43, 298–300.

    PubMed  CAS  Google Scholar 

  • Teather, R. M. (1982a). Maintenance of laboratory strains of obligately anaerobic rumen bacteria. Appl. Environ. Microbiol., 44, 499–501.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M. (1990). Gene transfer in rumen Bacteroides species. PhD thesis, University of Aberdeen.

    Google Scholar 

  • Thurston, B., Dawson, K. A. and Strobel, H. J. (1993). Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol., 59, 2631–7.

    PubMed  CAS  Google Scholar 

  • Tiwari, A. D., Bryant, M. P. and Wolfe, R. S. (1969). Simple method for isolation of Selenomonas ruminantium and some nutritional characteristics of the species. J. Dairy Sci., 52, 2054–6.

    Article  CAS  Google Scholar 

  • Tomei, F. A., Barton, L. L., Lemanski, C. L. and Zocco, T. G. (1992). Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can. J. Microbiol., 38, 1328–33.

    Article  CAS  Google Scholar 

  • Trincone, A., De Rosa, M., Gambacorta, A. et al. (1988). A simple chromatographic procedure for the detection of cyclized archaebacterial glycerol-bisdiphytanyl-glycerol tetrether core lipids. J. Gen. Microbiol., 134, 3159–63.

    PubMed  CAS  Google Scholar 

  • Trovatelli, L. D. and Matteuzzi, D. (1976). Presence of bifidobacteria in the rumen of calves fed different rations. Appl. Environ. Microbiol., 32, 470–3.

    PubMed  CAS  Google Scholar 

  • Van der Toorn, J. J. T. K. and Van Gylswyk, N. O. (1985). Xylan-digesting bacteria from the rumen of sheep fed maize straw diets. J. Gen. Microbiol., 131, 2601–7.

    Google Scholar 

  • Van Golde, L. M. G., Akkermans-Kruyswijk, J., Franklin-Klein, W. et al. (1975). Accumulation of phosphatidylserine in strictly anaerobic lactate fermenting bacteria. FEBS Lett., 53, 57–60.

    Article  PubMed  Google Scholar 

  • Van Gylswyk, N. O. (1980). Fusobacterium polysaccharolyticum sp. nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J. Gen. Microbiol., 116, 157–63.

    PubMed  Google Scholar 

  • Van Gylswyk, N. O. (1990). Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol. Ecol., 73, 243–54.

    Article  Google Scholar 

  • Van Gylswyk, N. O. (1995). Succiniclasticum ruminis gen. nov. sp. nov., a rumen bacterium converting succinate to propionate as sole energy-yielding mechanism. Int. J. Syst. Bacteriol., 45, 297–300.

    Article  PubMed  Google Scholar 

  • Van Gylswyk, N. O. and Hoffman, J. S. L. (1970). Characteristics of cellulolytic Cillobacteria from the rumens of sheep fed teff (Eragrostis tef) hay diets. J. Gen. Microbiol., 60, 381–6.

    PubMed  Google Scholar 

  • Van Gylswyk, N. O. and Roche, C. E. G. (1970). Characteristics of Ruminococcus and cellulolytic Butyrivibrio species from the rumens of sheep fed differently substituted teff (Eragrostis tef) hay diets. J. Gen. Microbiol., 64, 11–17.

    PubMed  Google Scholar 

  • Van Gylswyk, N. O. and Van Doom, C. E. A. (1992). Incidence and some growth characteristics of lactate-fermenting ruminal sarcinas. Swed. J. Agric. Res., 22, 131–9.

    Google Scholar 

  • Van Gylswyk, N. O. and Van der Toorn, J. J. T. K. (1985). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber digesting bacteria from the rumina of sheep fed corn stover. Int. J. Syst. Bacteriol., 35, 323–6.

    Article  Google Scholar 

  • Van Gylswyk, N. O. and Van der Toorn, J. J. K. T. (1986). Enumeration of Bacteroides succinogenes in the rumen of sheep fed maize straws. FEMS Microbiol. Ecol., 38, 205–9.

    Article  Google Scholar 

  • Van Gylswyk, N. O. and Van der Toorn, J. J. T. K. (1987). Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover. Int. J. Syst. Bacteriol., 37, 102–5.

    Article  Google Scholar 

  • Van Gylswyk, N. O., Morris, E. J. and Els, H. J. (1980). Sporulation and cell wall structure of Clostridium polysaccharolyticum comb. nov. (formerly Eubacterium polysaccharolyticum). J. Gen. Microbiol., 121, 491–3.

    Google Scholar 

  • Van Gylswyk, N. O., Wejdemar, K. and Kulander, K. (1992). Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. Appl Environ. Microbiol., 58, 99–105.

    Google Scholar 

  • Van Hellemond, J. J. and Tielens, A. G. M. (1994). Expression and functional properties of fumarate reductase. Biochem. J., 304, 321–31.

    PubMed  Google Scholar 

  • Varel, V. H. (1989). Reisolation and characterisation of Clostridium longisporum, a ruminal sporeforming anaerobic bacterium. Arch. Microbiol., 152, 209–14.

    Article  PubMed  CAS  Google Scholar 

  • Varel, V. H. and Dehority, B. A. (1989). Cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol., 55, 148–53.

    PubMed  CAS  Google Scholar 

  • Varel, V. H., Fryda, S. J. and Robinson, I. M. (1984). Cellulolytic bacteria from pig large intestine. Appl. Environ. Microbiol., 47, 219–21.

    PubMed  CAS  Google Scholar 

  • Verkley, A. J., Ververgaert, P. H. J. T., Prins, R. A. and Van Golde, L. M. G. (1975). Lipid-phase transitions of the strictly anaerobic bacteria Veillonella parvula and Anaerovibrio lipolytica. J. Bacteriol., 124, 1522–8.

    PubMed  CAS  Google Scholar 

  • Vicini, J. L., Brulla, W. J, Davis, C. L. and Bryant, M. P. (1987). Quin’s oval and other microbiota in the rumen of molasses-fed sheep. Appl. Environ. Microbiol., 53, 1273–6.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1986). Catabolism of amino acids by Megasphaera elsdenii LCI. Appl. Environ. Microbiol., 51, 1141–3.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and McKain, N. (1991). A survey of peptidase activity in rumen bacteria. J. Gen Microbiol., 137, 2259–64.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., McKain, N. and Broderick, G. A. (1993). Breakdown of different peptides by Prevotella (Bacteroides) ruminicola and mixed microorganisms from the sheep rumen. Curr. Microbiol., 26, 333–6.

    Article  PubMed  CAS  Google Scholar 

  • Wallnofer, P. and Baldwin, R. L. (1967). Pathway of propionate formation in Bacteroides ruminicola. J. Bacteriol., 93, 504–5.

    PubMed  CAS  Google Scholar 

  • Ware, C. E., Bauchop, T. and Gregg, K. (1989). The isolation and comparison of cellulase genes from two strains of Ruminococcus albus. J. Gen. Microbiol., 135, 921–30.

    PubMed  CAS  Google Scholar 

  • Wedekind, K. J., Mansfield, H. R. and Montgomery, L. (1988). Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human faeces. Appl. Environ. Microbiol., 54, 1530–5.

    PubMed  CAS  Google Scholar 

  • Wegner, G. H. and Foster, E. M. (1963). Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes. J. Bacteriol., 85, 53–61.

    PubMed  CAS  Google Scholar 

  • Weimer, P. J. (1993). Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch. Microbiol., 160, 288–94.

    Article  PubMed  CAS  Google Scholar 

  • Weimer, P. J., French, A. D. and Calamari, T. A. (1991). Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl. Environ. Microbiol., 57, 3101–6.

    PubMed  CAS  Google Scholar 

  • Weimer, P. J., Hatfield, R. D. and Buxton, D. R. (1993). Inhibition of ruminal cellulose fermentation by extracts of the perennial legume milkvetch Astragalus cicer. Appl. Environ. Microbiol., 59, 405–9.

    PubMed  CAS  Google Scholar 

  • Wells, J. E., Russell, J. B., Shi, Y. and Weimer, P. J. (1995). Cellodextrin efflux by the cellulolytic rumen bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl. Environ. Microbiol., 61, 1757–62.

    PubMed  CAS  Google Scholar 

  • Wetzstein, H. G., McCarthy, J. E. G. and Gottschalk, G. (1987). The membrane potential in a cytochrome-deficient species of Bacteroides: its magnitude and mode of generation. J. Gen. Microbiol., 133, 73–83.

    CAS  Google Scholar 

  • White, R. W. (1988). Structural diversity among methanofurans from different methanogenic bacteria. J. Bacteriol., 170, 4594–7.

    PubMed  CAS  Google Scholar 

  • Whitely, H. R. and Douglas, H. C. (1951). The fermentation of purines by Micrococcus lactyliticus. J. Bacteriol., 61, 605–16.

    Google Scholar 

  • Willems, A. and Collins, M. D. (1995). Phylogenetic analysis of Ruminococcus flavefaciens, the type species of the genus Ruminococcus, does not support the reclassification of Streptococcus hansenii andPeptostreptococcus productus as ruminococci. Int. J. Syst. Bacteriol., 45, 572–5.

    Article  PubMed  CAS  Google Scholar 

  • Williams, A. G. and Withers, S. E. (1983). Bacillus spp. in the rumen ecosystem. Hemicellulose depolymerases and glycoside hydrolases of Bacillus spp. and rumen isolates grown under anaerobic conditions. J. Appl. Bacteriol., 55, 283–92.

    CAS  Google Scholar 

  • Williams, A. G., Withers, S. E. and Coleman, G. S. (1984). Glycoside hydrolases of rumen bacteria and protozoa. Curr. Microbiol., 10, 287–93.

    Article  CAS  Google Scholar 

  • Williamson, R., Calderwood, S. B., Maellering, R. C. and Tomasz, A. (1983). Studies on the mechanism of intrinsic resistance to β-lactam antibiotics in group D streptococci. J. Gen. Microbiol., 129, 813–22.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. (1995). Foreword: when is a prokaryote not a prokaryote? In Archaea, A Laboratory Manual. Methanogens, ed. K. R. Sowers and H. J. Schreier. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. xix-xx.

    Google Scholar 

  • Wojciechowicz, M. and Ziolecki, A. (1979). Pectinolytic enzymes of large rumen treponemes. Appl. Environ. Microbiol., 37, 136–42.

    PubMed  CAS  Google Scholar 

  • Wojciechowicz, M. and Ziolecki, A. (1984). A note on the pectinolytic enzyme of Streptococcus bovis. J. Appl. Bacteriol., 56, 515–18.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J., Manning, G. B. and Nelson, W. O. (1959). Ammonium salts as a sole source of nitrogen for the growth of Streptococcus bovis. J. Bacteriol., 78, 147–9.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J., Wolin, E. A. and Jacobs, N. J. (1961). Cytochrome-producing anaerobic vibrio. Vibrio succinogenes, sp. n. J. Bacteriol., 81, 911–17.

    PubMed  CAS  Google Scholar 

  • Wood, T. M., Wilson, C. A. and Stewart, C. S. (1982). Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem. J., 105, 129–37.

    Google Scholar 

  • Wozny, M. A., Bryant, M. P., Holdeman, L. V. and Moore, W. E. C. (1977). Urease assay and urease producing species of anaerobes in the bovine rumen and human feces. Appl. Environ. Microbiol., 33, 1097–104.

    PubMed  CAS  Google Scholar 

  • Yokoyama, M. T. and Davis, C. L. (1971). Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strain B25, a rumen spirochaete. J. Bacteriol., 107, 519–27.

    PubMed  CAS  Google Scholar 

  • Yokoyama, M. T., Carlson, J. R. and Holdeman, L. V. (1977). Isolation and characteristics of a skatole producing Lactobacillus sp. from the bovine rumen. Appl. Environ. Microbiol., 34, 837–42.

    PubMed  CAS  Google Scholar 

  • Yoshinari, T. (1980). N2O reduction by Vibrio succinogenes. Appl. Environ, Microbiol, 39, 81–4.

    CAS  Google Scholar 

  • Zhang, C.-S. and Hollocher, T. C. (1993). The reaction of reduced cytochromes c with nitrous oxide reductases of Wolinella succinogenes. Biochim. Biophys. Acta., 1142, 253–61.

    Article  CAS  Google Scholar 

  • Zhang, N., Attwood, G. T., Lockingon, R. A. and Brocker, J. D. (1991). Genetic diversity in ruminal isolates of Selenomonas ruminantium. Curr. Microbiol., 22, 279–84.

    Article  CAS  Google Scholar 

  • Ziolecki, A. (1979). Isolation and characterisation of large treponemes from the bovine rumen. Appl. Environ, Microbiol., 37, 131–5.

    CAS  Google Scholar 

  • Ziolecki, A., Guczynska, W. and Wojciechowicz, M. (1992). Some rumen bacteria degrading fructan. Lett. Appl. Microbiol., 15, 244–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Stewart, C.S., Flint, H.J., Bryant, M.P. (1997). The rumen bacteria. In: Hobson, P.N., Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1453-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1453-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7149-9

  • Online ISBN: 978-94-009-1453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics