Skip to main content

Biochemical Mechanisms of Pollutant Stress

  • Chapter
Assessment of Crop Loss From Air Pollutants

Abstract

A discussion of biochemical mechanisms in this symposium is critical if one wishes to develop a concept of how O3 exposure induces alterations in a plant’s metabolism, which ultimately lower a plant’s final yield or market value. Furthermore, an understanding of what is and is not known will allow future research to be formulated. In keeping with this concept, I hope to describe several possible scenarios for the development of yield reduction due to primary and secondary biochemical responses. I will concentrate upon O3, as it was the major oxidant investigated within the NCLAN studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Adepipe, N. O. and D. T. Tingey. (1979). Ozone phototoxicity in relation to stress ethylene evolution and stomatal resistance in cowpea (Vigna unquiculata) cultivars. Z. Pflanzenphysiol., 93, 259–64.

    CAS  Google Scholar 

  • Bailey, P. S. (1978). Ozonation in organic chemistry: olefinic compounds, Vol. 1, 493pp. New York, Academic Press.

    Google Scholar 

  • Baker, D. A. (1978). Transport phenomena in plants, 80 pp. London, Chapman & Hall

    Google Scholar 

  • Barber, D. J. W. and J. R. Thomas. (1978). Reactions of radicals with lecithin bilayers. Rad. Res., 74, 51–65

    Article  CAS  Google Scholar 

  • Behrens, P. W., F. Xu, M. Werner, T. Hoffman, T. V. Marsho and A. B. Mackay. (1985). The effect of low osmotic potential on nitrite reduction in intact spinach chloroplasts. Plant Physiol., 79, 441–4.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. H., E. H. Lee, and H. E. Heggestad. (1984). Biochemical aspects of plant tolerance to ozone and oxyradicals: superoxide dismutase. In Gaseous pollutants and plant metabolism, ed. by M. J. Koziol and F. R. Whatley, 413–24. London, Butterworths Scientific.

    Google Scholar 

  • Berkowitz, G. A. and C. Whalen. (1985). Leaf K+ interaction with water stress inhibition of nonstomatal-controlled photosynthesis. Plant Physiol., 79, 189–93.

    Article  PubMed  CAS  Google Scholar 

  • Bielski, B. H. J. (1983). Evaluation of the reactivities of HO2/O2 with compounds of biological interest. In Oxy-radicals and their scavenger systems: molecular aspects. ed. by G. Cohen and R. G. Greenwald, Vol. 1, 1–7. New York, Elsevier Press.

    Google Scholar 

  • Black, V. J. (1984). The effects of air pollutants on apparent respiration. In Gaesous pollutants and plant metabolism, ed. by M. J. Koziol and F. R. Whatley, 231–48. London. Butterworths Scientific.

    Google Scholar 

  • Bobrov, R. A. (1952). The effect of smog on the anatomy of oat leaves. Phytopathology, 42, 558–63

    Google Scholar 

  • Boguth, W. (1969). Aspects of the action of vitamin E. Vit. Hormones, 27, 1–15.

    Article  CAS  Google Scholar 

  • Borland, A. M. and A. J. Rowland. (1988). Pollution and polyamines. In Air pollution and plant metabolism, ed. by S. Schulte-Hosted, L. Blank, N. Darrall and A. R. Wellburn, (in press). Berlin, De Gruyter.

    Google Scholar 

  • Borochov, A. and R. Faiman-Weinberg. (1984). Biochemical and biophysical changes of plant protoplasmic membranes during senescence. What’s New in Plant Physiol., 15, 1–4.

    CAS  Google Scholar 

  • Carpita, N., D. Sabularse, D. Montezinos, and D. P. Delmer. (1979). Determination of the pore size of plant walls of living plant cells. Science, 205, 1144–7

    Article  PubMed  CAS  Google Scholar 

  • Castillo, F. J. (1986). Extracellular peroxidases as markers of stress? In Molecular and physiological aspects of plant peroxidases, ed. by H. Greppin, CI. Penel, and Th. Gasper, 419–26. Genieve, Switzerland, Centre de Botanique, Université de Genieve

    Google Scholar 

  • Castillo, F. J. and H. Greppin. (1986). Balance between anionic and cationic extracellular peroxidase activities in Sedum album leaves after ozone exposure: analysis by high-performance liquid chromatography. Physiol. Plant., 68, 201–8

    Article  CAS  Google Scholar 

  • Castillo, F. J., CI. Penel, and H. Greppin. (1984). Peroxidase release induced by ozone in Sedum album leaves: involvement of Ca2+. Plant Physiol., 74, 846–51.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, F. J., P. R. Miller, and H. Greppin. (1987). Extracellular biochemical markers of photochemical oxidant air pollutant damage to Norway spruce. Experientia, 43, 111–15.

    Article  CAS  Google Scholar 

  • Cleland, R. E. (1975). Auxin-induced hydrogen ion excretion: correlation with growth, and control by external pH and water stress. Planta, 127, 233–42.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (1987). Wall relaxation and the driving forces for cell expansive growth. Plant Physiol., 84, 561–4.

    Article  PubMed  CAS  Google Scholar 

  • Coster, H. G. L., E. Steudle, and U. Zimmerman. (1977). Turgor pressure sensing in plant cell membranes. Plant Physiol., 58, 636–43.

    Article  Google Scholar 

  • Coulson, C. L. and R. L. Heath. (1972). Inhibition of the photosynthetic capacity of isolated chloroplasts by ozone. Plant Physiol., 53, 32–8.

    Article  Google Scholar 

  • Cramer, G. R., A. Lauchli, and V. S. Polito. (1985). Displacement of Ca2+ by Na+ from the plasmalemma of root cells: a primary response to salt stress. Plant Physiol., 79, 207–11.

    Article  PubMed  CAS  Google Scholar 

  • Criegee, R. (1975). Mechanism of ozonolysis. Angewandte Chemie (Intl. Ed.), 14, 745–60.

    Article  Google Scholar 

  • Curtis, C. R., R. K. Howell, and D. F. Kremer. (1976). Soybean peroxidases from ozone injury. Environ. Pollut., 11, 189–94.

    Article  CAS  Google Scholar 

  • Dass, H. C. and G. M. Weaver. (1968). Modification of ozone damage to Phaseolus vulgaris by antioxidants, thiols, and sulfhydryl reagents. Can. J. Plant Sci., 48, 569–74.

    Article  CAS  Google Scholar 

  • Demarty, M., C. Morvan, and M. Thellier. (1984). Calcium and cell wall. Plant Cell Environ., 7, 399–411.

    Article  Google Scholar 

  • Dominy, P. J. and R. L. Heath. (1985). Inhibition of the K+-stimulated ATPase of the plasmalemma of Pinto bean leaves by ozone. Plant Physiol., 77, 43–5.

    Article  PubMed  CAS  Google Scholar 

  • Ellenson, J. L. and R. G. Amundson. (1982). Delayed light imaging for the early detection of plant stress. Science, 215, 1104–6.

    Article  PubMed  CAS  Google Scholar 

  • Enoch, S. and Z. Glinka. (1983). Turgor-dependent membrane permeability in relation to calcium level. Physiol. Plant., 59, 203–7.

    Article  CAS  Google Scholar 

  • Esau, K. (1965). Plant anatomy, 2nd edn, 37 pp. New York, John Wiley.

    Google Scholar 

  • Evans, L. S. and I. P. Ting. (1973). Ozone induced membrane permeability changes. Am. J. Bot. 60, 155–62

    Article  CAS  Google Scholar 

  • Evans, L. S. and I. P. Ting. (1974). Effect of ozone on 86Rb-labeled potassium transport in leaves of Phaseolus vulgaris L. Atmos. Environ., 8, 855–61

    Article  CAS  Google Scholar 

  • Gamble, P. E. and J. J. Burke. (1984). Effects of water stress on the chloroplast antioxidant system I. Alterations in glutathione reductase activity. Plant Physiol, 76, 615–21

    Article  PubMed  CAS  Google Scholar 

  • Gasper, Th., CI. Penel, F. J. Castillo, and H. Greppin. (1985). A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant., 64, 418–23

    Article  Google Scholar 

  • Grimes, H. D., K. K. Perkins and W. F. Boss. (1983). Ozone degrades into hydroxyl radical under physiological conditions: a spin trapping study. Plant Physiol., 72, 1016–20

    Article  PubMed  CAS  Google Scholar 

  • Gross, G. C. and C. Janse. (1977). Formation of NADH and hydrogen peroxide by cell wall-associated enzymes from Forsythia xylem. Zeit. fur Pflanzenphysiol., 84, 447–52

    CAS  Google Scholar 

  • Gurol, M. D. and P. C. Singer. (1982). Kinetics of ozone decomposition: a dynamic approach. Environ. Sci. Technol., 16, 377–83.

    Article  CAS  Google Scholar 

  • Hällgren, J.-E. (1984). Photosynthetic gas exchange in leaves affected by air pollutants. In Gaseous pollutants and plant metabolism, ed. by M. J. Koziol and F. R. Whatley, 147–60. London, Butterworths Scientific.

    Google Scholar 

  • Hansom, A. D. and W. D. Hitz. (1982). Metabolic responses of mesophytes to plant water deficits. Ann. Rev. Plant Physiol., 33, 163–203

    Article  Google Scholar 

  • Hayashi, T., S. M. Read, J. Bussell, M. Thelen, F.-C. Lin, R. M. Brown, Jr. and D. P. Delmer. (1987). UDP-glucose: (l-3)-/?-glucan synthase from mung bean and cotton. Plant Physiol., 83, 1054–62

    Article  PubMed  CAS  Google Scholar 

  • Heath, R. L. (1979). Breakdown of ozone and formation of hydrogen peroxide in aqueous solutions of amine buffers exposed to ozone. Toxicol. Letters, 4, 449–53

    Article  CAS  Google Scholar 

  • Heath, R. L. (1980). Initial events in injury to plants by air pollutants. Ann. Rev. Plant Physiol., 31, 395–431.

    Article  CAS  Google Scholar 

  • Heath, R. L. (1984). Air pollutant effects on biochemicals derived from metabolism: organic, fatty, and amino acids. In Gaseous pollutants and plant metabolism, ed by M. J. Koziol and F. R. Whatley, 275–90. London, Butterworths Scientific.

    Google Scholar 

  • Heath, R. L. (1987). The biochemistry of ozone attack on the plasma membrane of plant cells. Rec. Adv. Phytochem., 21, 29–54.

    CAS  Google Scholar 

  • Heath, R. L. and P. E. Frederick. (1979). Ozone alteration of membrane permeability in Chlorella: I. Permeability of potassium ion as measured by 86Rubidium tracer. Plant Physiol., 64, 455–9

    Article  PubMed  CAS  Google Scholar 

  • Heath, R. L. and F. J. Castillo. (1988). Membrane disturbances in response to air pollutants. In Air pollution and plant metabolism, ed by S. Schulte-Hosted, L. Blank, N. Darrall and A. R. Wellburn, 55–75. Berlin, De Gruyter.

    Google Scholar 

  • Heath, R. L., P. E. Chimiklis, and P. Frederick. (1974). Role of potassium and lipids in ozone injury to plant membranes. In Air pollution effects on plant growth, ed. by W. M. Dugger, Jr., 58–75. Washington, DC, American Chemical Society.

    Chapter  Google Scholar 

  • Heath, R. L., R. T. Furbank, and D. A. Walker. (1985). Effects of polyethylene-glycol induced osmotic stress on transpiration and photosynthesis in Pinto bean leaf disc. Plant Physiol., 78, 627–9.

    Article  PubMed  CAS  Google Scholar 

  • Hepler, P. C. and R. O. Wayne. (1985). Calcium and plant development. Ann. Rev. Plant Physiol., 36, 397–439.

    Article  CAS  Google Scholar 

  • Hesketh, J. D. and J. W. Jones. (1980). Predicting photosynthesis for ecosystem models, 273 pp. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Imaseki, H. (1985). Hormonal control of wound-induced responses. In Plant hormones. Encyclopedia of Plant Physiology, New Series, Vol. 11, 485–512. Berlin, Springer-Verlag

    Google Scholar 

  • Kaiser, W. M. and U. Heber. (1981). Photosynthesis under osmotic stress: effect of high solute concentrations on the permeability properties of the chloroplast envelope and on activity of stroma enzymes. Planta, 153, 423–9

    Article  CAS  Google Scholar 

  • Kaiser, W. M., G. Kaiser, P. K. Prachuab, S. G. Wildman, and U. Heber. (1981). Photosynthesis under osmotic stress: inhibition of photosynthesis of intact chloro-plasts, protoplasts, and leaf slices at high osmotic potentials. Planta, 153, 153,416–22.

    Article  CAS  Google Scholar 

  • Kaiser, W. M., G. Kaiser, S. Schoner, and S. Neimanis. (1981). Photosynthesis under osmotic stress: differential recovery of photosynthetic activities of stroma enzymes, intact chloroplasts, protoplasts, and leaf slices after exposure to high solute concentrations. Planta, 153, 430–5.

    Article  CAS  Google Scholar 

  • Kauss, H. and W. Jeblick. (1986). Influence of free fatty acids, lysophos-phatidylcholine, platelet-activating factor, acylcarnitine, and echinocandin B on l,3-j3-d-glucan synthase and callose synthesis. Plant Physiol., 80, 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Kinraide, T. B. and R. E. Wyse. (1986). Electrical evidence for turgor inhibition of proton extrusion in sugar beet taproot. Plant Physiol., 82, 1148–50

    Article  PubMed  CAS  Google Scholar 

  • Kinraide, T. B., I. A. Newman and B. Etherton. (1984). A quantitative simulation model for H+-amino acid cotransport to interpret the effects of amino acids on membrane potential and extracellular pH. Plant Physiol., 76, 806–13

    Article  PubMed  CAS  Google Scholar 

  • Koziol, M. J. and F. R. Whatley (Eds). (1984). Gaseous pollutants and plant metabolism., 466 pp. London, Butterworths Scientific.

    Google Scholar 

  • Lagrimini, L. M. and S. Rothstein. (1987). Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol., 84, 438–42.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. H. and C. M. Chen. (1982). Studies on the mechanisms of ozone tolerance: cytokinin-like activity of N-[2-(2-oxo-l-imidazolidinyl)ethyl]-N’-phenylurea, a compound protecting against ozone injury. Physiol. Plant., 56, 486–91

    Article  CAS  Google Scholar 

  • Lee, E. H., J. A. Jersey, C. Gifford and J. Bennett. (1984). Differential ozone tolerance in soybean and snapbeans: analysis of ascorbic acid in 03-susceptible and 03-resistant cultivars by high-performance liquid chromatography. Environ. Exptl. Bot., 24, 331–41

    Article  CAS  Google Scholar 

  • Lefebvre, J. and C. Gillet. (1973). Effect of pH on the membrane potential and electrical resistance of Nitella-flexilis in the presence of calcium. J. Exptl. Bot., 24, 1024–30.

    Article  CAS  Google Scholar 

  • Lendzian, K. J. and M. H. Unsworth. (1983). Ecophysiological effects of atmospheric pollutants. In Encyclopedia of plant physiol., New Series, Vol. IV, 466–502. Berlin, Springer-Verlag.

    Google Scholar 

  • Levitt, J. (1972). Responses of plants to environmental stress., 697 pp. New York, Academic Press.

    Google Scholar 

  • Li, Z.-S. and S. Delrot. (1987). Osmotic dependence of the transmembrane potential difference of Broadbean mesocarp cells. Plant Physiol., 84, 895–9

    Article  PubMed  CAS  Google Scholar 

  • Macklon, A. E. S. (1984). Calcium fluxes at plasmalemma and tonoplast. Plant Cell Environ., 7, 407–13.

    Article  CAS  Google Scholar 

  • Majerus, P. W., P. W., T. M. Connolly, H. Deckmyn, T. S. Ross, T. E. Bross, H. Ishii, V. S. Bansal, and D. B. Wilson. (1986). The metabolism of phosphoinositide-derived messenger molecules. Science, 234, 1519–26

    Article  PubMed  CAS  Google Scholar 

  • Manning, W. J., W. A. Feder, P. M. Papia, and I. Perkins. (1971). Influence of foliar ozone injury on root development and root surface fungi of Pinto bean. Environ. Pollut., 1, 305–12.

    Article  Google Scholar 

  • Marme, D. (1985). The role of calcium in the cellular regulation of plant metabolism. Physiol. Veg., 23, 945–53.

    CAS  Google Scholar 

  • Matheson, I. B. C. and A. D. King, Jr. (1978). Solubility of gases in micellar solutions. J. Colloid Interface Sci., 66, 464–9.

    Article  CAS  Google Scholar 

  • Matters, G. L. and J. G. Scandalios. (1987). Synthesis of isozymes of superoxide dismutase in Maize leaves in response to 03, S02, and elevated 02. J. Exptl. Bot., 38, 842–52

    Article  CAS  Google Scholar 

  • Mehlhorn, H. and A. R. Wellburn. (1987). Stress ethylene formation determines plant sensitivity to ozone. Nature, 327, 417–18.

    Article  CAS  Google Scholar 

  • Mehlhorn, H., G. Seufert, A. Schmidt, and K. J. Kunert. (1986). Effect of S02 and 03 on production of antioxidants in conifers. Plant Physiol., 82, 336–38

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. E. (1988). Effects on photosynthesis, carbon allocation, and plant growth associated with air pollutant stress. In Assessment of crop loss from air pollutants. Proceedings of the International Conference, Raleigh, North Carolina, USA, ed. by W. W. Heck, O. C. Taylor, and D. C. Tingey. London, Elsevier Applied Science

    Google Scholar 

  • Morgan, B. P., J. P. Luzio, and A. K. Campbell. (1986). Intracellular Ca2+ and cell injury: a paradoxical role of Ca2+ in complement membrane attack. Cell Calcium, 7, 399–411

    Article  PubMed  CAS  Google Scholar 

  • Morvan, C., M. Demarty, and M. Thellier. (1979). Titration of isolated cell walls of Lemna minor L., Plant Physiol., 63, 1117–22

    Article  PubMed  CAS  Google Scholar 

  • Mudd, J. B. (1973). Biochemical effects of some air pollutants on plants. Adv. Chem., 122, 31–47.

    Article  Google Scholar 

  • Mudd, J. B., S. K. Banerjee, M. M. Dooley, and K. L. Knight. (1984). Pollutants and plant cells: effects on membranes. In Gaseous pollutants and plant metabolism, ed. by M. J. Koziol and F. R. Whatley, 105–16. London, Butterworths Scientific.

    Google Scholar 

  • Nieboer, E. and J. D. MacFarlane. (1984). Modification of plant cell buffering capacities by gaseous air pollutants. In Gaseous pollutants and plant metabolism, ed. by M. J. Koziol and F. R. Whatley, 313–29. London, Butterworths Scientific

    Google Scholar 

  • Nobel, P. S. (1974). Introduction of biophysical plant physiology, 2nd edn, 363 pp. San Francisco, W. H. Freeman.

    Google Scholar 

  • Omasa, K., K.-I. Shimazaki, I. Aiga, W. Larcher, and M. Onoe. (1987). Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol., 84, 748–52.

    Article  PubMed  CAS  Google Scholar 

  • Ordin, L., M. A. Hall, and J. I. Kindinger. (1969). Oxidant-induced inhibition of enzymes involved in cell wall polysaccharide synthesis. Arch. Environ. Health., 18, 623–6

    PubMed  CAS  Google Scholar 

  • Ormrod, D. P. and D. W. Beckerson. (1986). Polyamines as antiozonants for tomato. HortSci., 21, 1070–1

    CAS  Google Scholar 

  • Pallas, J. E. and S. J. Kays. (1982). Inhibition of photosynthesis by ethylene—a stomatal effect. Plant Physiol., 70, 598–601

    Article  PubMed  CAS  Google Scholar 

  • Pauls, K. P. and J. E. Thompson. (1981). Effects of in vitro treatment with ozone on the physical and chemical properties of membranes. Physiol. Plant., 53, 255–62

    Article  CAS  Google Scholar 

  • Pell, E. J. (1988). Secondary metabolism and air pollutants. In Air pollution and plant metabolism, ed. by S. Schulte-Hosted, L. Blank, N. Darrall, and A. R. Wellburn, 222–37. Berlin, De Gruyter

    Google Scholar 

  • Pell, E. J. and E. Brennan. (1973). Changes in respiration, photosynthesis, adenosine 5’-triphosphate, and total adenylate content of ozonated Pinto bean foliage as they relate to symptom expression. Plant Physiol., 51, 378–81

    Article  PubMed  CAS  Google Scholar 

  • Porter, G. A., D. P. Knievel, and J. C. Shannon. (1987). Assimilate unloading from Maize (Zea mays L.) pedicel tissue: I. Evidence for regulation of unloading by cell turgor. Plant Physiol., 83, 131–6

    Article  PubMed  CAS  Google Scholar 

  • Pryor, W. A., J. W. Lightsey, and D. G. Prier. (1982). The production of free radicals in vivo from the action of xenobiotics: the initiation of autoxidation of polyunsaturated fatty acids by NO2 and 03. In Lipid peroxides in biology and medicine, ed. by K. Yagi, 1–22. New York, Academic Press.

    Google Scholar 

  • Rasi-Caldogno, F., M. C. Pugiarello, and M. I. De Michelis. (1987). The Ca2+- transport ATPase of plant plasma membrane catalyzes an H+/Ca2+ exchange. Plant Physiol83, 994–1000

    Article  Google Scholar 

  • Reid, D. M. and R. L. Wample. (1985). Water relations and plant hormones. In Plant hormones. Encyclopedia of plant physiology, New Series, Vol. 11, 513–78. Berlin, Springer-Verlag.

    Google Scholar 

  • Reuter, H. (1983). Calcium channel modulation by neurotransmitters, enzymes, and drugs. Nature, 301, 569–74

    Article  PubMed  CAS  Google Scholar 

  • Rickauer, M. and W. Tanner. (1986). Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris. Plant Physiol., 82, 41–6

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. P. (1985). Osmotic adjustment by intact isolated chloroplasts in response to osmotic stress and its effect on photosynthesis and chloroplast volume. Plant Physiol., 79, 996–1002

    Article  PubMed  CAS  Google Scholar 

  • Rogers, H. J. and H. R. Perkins. (1968). The architecture of the plant cell wall. In Cell walls and membranes., 90–113. London, E. & F. N. Spon

    Google Scholar 

  • Roland, J. (1973). The relationship between the plasmalemma and cell wall. Int. Rev. Cytol, 36, 45–91

    Article  PubMed  CAS  Google Scholar 

  • Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol., 57, 308–9

    Article  PubMed  CAS  Google Scholar 

  • Saran, M., C. Michel and W. Bors. (1988). Reactivities of free radicals. In Air pollution and plant metabolism, ed. by S. Schulte-Hostede, L. Blank, N. Darrall, and A. R. Wellburn, Berlin, De Gruyter.

    Google Scholar 

  • Schulte-Hostede, S., L. Blank, N. Darrall, and A. R. Wellburn. (1988). Air pollution and plant metabolism, (in press). Berlin, De Gruyter.

    Google Scholar 

  • Schwab, W. G. W. and E. Komor. (1978). A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. FEBS Lett., 87, 157–60

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, A. (1985). Role of Ca2+ and EGTA on stomatal movements in Commelina communis. L. Plant Physiol., 79, 1003–5

    Article  CAS  Google Scholar 

  • Selm, R. P. (1959). Ozone oxidation of aqueous cyanide waste solution in stirred batch reactors and packed towers. Adv. Chem., 21, 66–77

    Article  CAS  Google Scholar 

  • Schechter, H. (1973). Spectrophotometric method for determination of ozone in aqueous solutions. Water Res., 7, 729–39

    Google Scholar 

  • Sisler, E. C. and R. Goren. (1981). Ethylene-binding—the basis for hormone action in plants. What’s New in Plant Physiol., 12, 37–40

    Google Scholar 

  • Slater, T. F. (1984). Free-radical mechanisms in tissue injury. Biochem. J., 222, 1–15

    PubMed  CAS  Google Scholar 

  • Smith, T. A. (1985). Polyamines. Ann. Rev. Plant Physiol., 36, 117–43

    Article  CAS  Google Scholar 

  • Sovonick-Dunford, S. (1986). Water relations parameters of White Ash sieve tubes. In Phloem transport, ed. by J. Cronshaw, W. J. Lucas, and R. T. Giaquinta, 187–91. New York, Alan R. Liss

    Google Scholar 

  • Staehelin, J. and J. Holgne (1982). Decomposition of ozone in water: rate of initiation by hydroxide ion and hydrogen peroxide. Environ. Sci. Technol., 16, 676–81

    Article  CAS  Google Scholar 

  • Staehelin, J. and J. Holgne. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol., 19, 1206–13

    Article  CAS  Google Scholar 

  • Sutton, R. and LP. Ting. (1977). Evidence for the repair of ozone induced membrane injury. Am. J. Bot., 64, 404–11

    Article  CAS  Google Scholar 

  • Taylor, G. E., Jr, P. J. Hanson, and D. D. Baldocchi. (1988). Pollution deposition to individual leaves and plant canopies: sites of regulation and relationship to injury. In Assessment of crop loss from air pollutants, Proceedings of the International Conference, Raleigh, North Carolina, USA, ed. by W. W. Heck, O. C. Taylor, and D. C. Tingey, 227–57. London, Elsevier Applied Science

    Google Scholar 

  • Thom, M. and A. Maretzki. (1985). Evidence for a plasmalemma redox system in sugarcane. Plant Physiol., 77, 873–6

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. E., R. L. Legge, and R. F. Barber. (1987). The role of free radicals in senescence and wounding. New Phytoi, 105, 317–44

    Article  CAS  Google Scholar 

  • Thomson, W. W., E. A. Nothnagel, and R. C. Huffaker. (1987). Plant senescence: its biochemistry and physiology, 255 pp. Rockville, American Society of Plant Physiology

    Google Scholar 

  • Thorp, C. E. (1954). Bibliography of ozone technology Vols I and II. Chicago, IL, Armour Research Foundation, J. S. Swift & Co.

    Google Scholar 

  • Ticha, I. and J. Catsky. (1977). Ontogenetic changes in the internal limitations to bean-leaf photosynthesis. Photosynthetica, 11, 361–6

    CAS  Google Scholar 

  • Ting, I. P. (1982). Plant physiology, 499–502. Reading, Mass., Addison-Wesley

    Google Scholar 

  • Tingey, D. T. and G. E. Taylor, Jr. (1982). Variation in plant response to ozone: a conceptual model of physiological events. In Effects of gaseous air pollution in agriculture and horticulture, ed. by M. H. Unsworth and D. P. Ormrod, 113–38. London, Butterworths Scientific

    Google Scholar 

  • Tingey, D. T., R. C. Fites, and C. Wickliff. (1975). Activity changes in selected enzymes from Soybean leaves following ozone exposure. Physiol. Plant., 33, 316–20

    Article  CAS  Google Scholar 

  • Tromballa, H. W. (1974). Der Einfluss des pH-werts auf Aufnahme und Abgabe von Natrium durch Chlorella. Planta, 117, 339–48

    Article  CAS  Google Scholar 

  • Turrell, F. M. (1934). The area of the internal exposed surface of dicotyledon leaves. Am. J. Bot., 23, 255–64

    Article  Google Scholar 

  • Van Volkenburgh, E. and R. E. Cleland. (1984). Control of leaf growth by changes in cell wall properties. What’s New in Plant Physiol., 15, 25–8

    Google Scholar 

  • Villanueva, V. R., M. Mardon, F. Mancelon, and A. Santerre. (1988). Biochemical markers in polluted Picea trees. I. Is putrescine a useful pollution biological marker?, ed. by S. Schulte-Hostede, L. Blank, N. Darrall, and A. R. Wellburn (in press). Berlin, De Gruyter

    Google Scholar 

  • Wasserman, B. P. and K. J. McCarthy. (1986). Regulation of plasma membrane jÖ-glucan synthase from red beet root by phospholipids. Plant Physiol., 82, 396–400

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J. (1935). Investigations on the radical H02’ in solution. Trans. Faraday Soc., 31, 668–81

    Article  CAS  Google Scholar 

  • Westgate, M. E. and E. Steudle. (1985). Water transport in the midrib tissue of Maize tissue of Maize leaves: direct measurement of the propagation of changes in cell turgor across a plant tissue. Plant Physiol., 8, 183–91

    Article  Google Scholar 

  • Wolf, S. P., A. Garner, and R. T. Dean. (1986). Free radicals, lipids, and protein degradation. Trends in Biochem. Sci., 11, 27–31.

    Article  Google Scholar 

  • Yang, S. F. and N. E. Hoffman. (1984). Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35, 155–89

    Article  CAS  Google Scholar 

  • Zimmermann, U. and F. Beckers. (1978). Generation of action potentials in Chara corallina by turgor pressure changes. Planta, 138, 173–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Elsevier Science Publishers Ltd.

About this chapter

Cite this chapter

Heath, R.L. (1988). Biochemical Mechanisms of Pollutant Stress. In: Heck, W.W., Taylor, O.C., Tingey, D.T. (eds) Assessment of Crop Loss From Air Pollutants. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1367-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1367-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7109-3

  • Online ISBN: 978-94-009-1367-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics