The Scattering of Light by Swollen Networks

  • R. S. Stein
  • V. K. Soni
  • H. Yang
  • Burak Erman

Abstract

Swollen networks scatter more light than solutions of linear molecules of the same concentration. This occurs because of the concentration fluctuations associated with the variation of the local degree of swelling related to variations in the local crosslink density. Measurements are reported on model end-linked bimodal networks of controlled heterogeneity, and compared with theoretical estimates of the effect. The observed discrepancy is indicative of the need for an improvement in concepts of micro deformation of networks during swelling.

Keywords

Concentration Fluctuation Local Degree Intermediate Configuration Segmental Orientation Affine Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhagavantam, S., The Scattering of Light and the Raman Effect, Chemical Publishing Co., New York, 1942.Google Scholar
  2. 2.
    Debye, P. and Bueche, A. M., J. Appl. Phys., 1949, 20, 518.CrossRefGoogle Scholar
  3. 3.
    Benoit, H. et al., J. Polym. Sci., Polym. Phys. Ed., 1976, 14, 2119.Google Scholar
  4. 4.
    Stein, R. S., J. Polym. Sci., Polym. Lett. Ed., 1969, 7, 657.CrossRefGoogle Scholar
  5. 5.
    Flory, P. J. and Rehner, J., J. Chem. Phys., 1949, 11, 521.CrossRefGoogle Scholar
  6. 6.
    Flory, P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953.Google Scholar
  7. 7.
    Flory, P. J., J. Chem. Phys., 1942, 10, 51.CrossRefGoogle Scholar
  8. 8a.
    Huggins, M. H., J. Phys. Chem., 1942, 46, 151;CrossRefGoogle Scholar
  9. 8b.
    Huggins, M. H.Ann. NY Acad. Sci., 1942, 41, 1.CrossRefGoogle Scholar
  10. 9a.
    Kuhn, W., Koll. Zeitschr., 1936, 76, 258;CrossRefGoogle Scholar
  11. 9b.
    Kuhn, W. Angew. Chem., 1938, 51, 640.CrossRefGoogle Scholar
  12. 10.
    James, H. M. and Guth, E., J. Chem. Phys., 1947, 15, 651.CrossRefGoogle Scholar
  13. 11.
    Langley, N. R., Macromolecules, 1968, 1, 348.CrossRefGoogle Scholar
  14. 12.
    Edwards, S. F., Brit. Polym. J., 1977, 9, 140.CrossRefGoogle Scholar
  15. 13.
    Flory, P. J. and Erman, B., Macromolecules, 1982, 15, 800, 806.Google Scholar
  16. 14.
    Einstein, A., Ann. de Physik, 1910, 33, 1275.CrossRefGoogle Scholar
  17. 15.
    Mark, J. E., in Elastomers and Rubber Elasticity, Mark, J. E. and Lal, J. (Eds), American Chemical Society, Washington, DC, 1982.CrossRefGoogle Scholar
  18. 16.
    Schultz, G. V., Z. Physik. Chem., 1939, B43, 25.Google Scholar
  19. 17.
    Stein, R. S., Farris, R. J., Kumar, S. and Soni, V., in Elastomers and Rubber Elasticity, Mark, J. E. and Lal, J. (Eds), American Chemical Society, Washington, DC, 1982.Google Scholar
  20. 18.
    Soni, V. K., Optical studies of swollen polymer networks, PhD Dissertation, University of Massachusetts, Amherst, 1986.Google Scholar
  21. 19.
    Fischer, A. and Gotlieb, M., Poster at Networks’86, Elsinore, Denmark, September 1986.Google Scholar
  22. 20.
    Stein, R. S., Soni, V. K. and Yang, H. E., Optical Studies of Network Topology, in press.Google Scholar
  23. 21.
    Stein, R. S. and Keane, J. J., J. Polym. Sci., 1955, 17, 21.CrossRefGoogle Scholar
  24. 22.
    Hrabowska, J. and Stein, R. S., Poster at Networks’86, Elsinore, Denmark, September 1986.Google Scholar
  25. 23.
    Bastide, J., Picot, C. and Candau, S., J. Macromol. Sci., Phys., 1981, B19, 13.Google Scholar

Copyright information

© Elsevier Applied Science Publishers Ltd 1988

Authors and Affiliations

  • R. S. Stein
    • 1
  • V. K. Soni
    • 1
  • H. Yang
    • 1
  • Burak Erman
    • 2
  1. 1.Polymer Research InstituteUniversity of MassachusettsAmherstUSA
  2. 2.School of EngineeringBagazici UniversityIstanbulTurkey

Personalised recommendations