Advertisement

Application of High-Resolution 13C NMR To Crystalline Polymers

  • Ryozo Kitamaru

Abstract

The basic principles of high resolution 13C NMR for solids, and some applications for studying the semicrystalline structures of polyethylene and celluloses are reviewed. Characteristic 13C spectra, determined by three principal values of the chemical shift tensor, are obtainable by applying a sufficiently large resonant oscillating magnetic field to 1H nuclei (DD). The determination of the principal axes of the chemical shift tensor of orthorhombic polyethylene is reviewed. The DD technique can be applied to oriented samples because the molecular chain axis is parallel to the tensor’s principal axis having the largest principal value. Thus 13C NMR with DD for uniaxial samples parallel to the static magnetic field shows a sharp crystalline line corresponding to the largest principal value and a non-crystalline line having the same chemical shift as observed in solution. The detailed study of the phase structure of a highly oriented sample is discussed.

Keywords

Crystalline Polymer Chain Conformation Native Cellulose Equilibrium Magnetization Regenerate Cellulose Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pines, A., Gibby, M. G. and Waugh, J. S., J. Chem. Phys., 1972, 56, 1776; 1973, 59, 569; Chem. Phys. Lett., 1972, 15, 373.Google Scholar
  2. 2.
    Mehring, M. in Principles of High Resolution NMR in Solids, 1976 and 1983, Springer-Verlag, Berlin.Google Scholar
  3. 3.
    Waugh, J. S., Huber, L. M. and Haeberlen, U., Phys. Rev. Lett., 1968, 20, 180.Google Scholar
  4. 4.
    Kubo, R. and Tomita, K., J. Phys. Soc. Japan, 1954, 9, 888.Google Scholar
  5. 5.
    Bloembergen, N. and Rowland, J. A., Acta Met., 1953, 1, 731.Google Scholar
  6. 6.
    Andrew, E. R., Bradbury, A. and Eades, R. G., Nature (London) 1958,182, 1659; 1959, 183, 1802.Google Scholar
  7. 7.
    Lowe, I. J., Phys. Rev. Lett., 1959, 2, 285.Google Scholar
  8. 8.
    Schaefer, J., Stejskal, E. O. and Buchdahl, R., Macromolecules, 1977,10, 384.Google Scholar
  9. 9.
    Stejskal, E. O., Schaefer, J. and McKay, R. A., J. Magn. Res., 1977, 25, 569.Google Scholar
  10. 10.
    Bloemberger, N., Purcell, E. M. and Pound, R. V., Phys. Rev., 1948, 73, 679.Google Scholar
  11. 11.
    Solomon, I., Phys. Rev., 1955, 99, 559.Google Scholar
  12. 12.
    Abragam, A., The Principle of Nuclear Magnetism, 1961, Oxford University Press, Oxford.Google Scholar
  13. 13.
    Slichter, C. P., Principles of Magnetic Resonance, 1978, Springer-Verlag, Weinheim.Google Scholar
  14. 14.
    Kitamaru, R., in Applications of NMR Spectroscopy to Problems in Stereochemistry and Conformational Analysis, Y. Takeuchi and A. P. Marchand (Eds), 1986, Verlag Chemie, Deerfield Beach, FL, USA.Google Scholar
  15. 15.
    Woessner, D. E., J. Chem. Phys., 1962, 36, 1; 1962, 37, 647.Google Scholar
  16. 16.
    Howarth, O. W., J. Chem. Soc. Faraday Trans. II, 1978, 74, 1031; 1979, 75, 863.Google Scholar
  17. 17.
    Murayama, K., Horii, F. and Kitamaru, R., Bull. Inst. Chem. Res. Kyoto Univ., 1983, 61, 229.Google Scholar
  18. 18.
    Horii, F., Hirai, A., Murayama, K. and Kitamaru, R., Macromolecules, 1983, 16, 273.Google Scholar
  19. 19.
    VanderHart, D. L., J. Chem. Phys., 1976, 64, 830.Google Scholar
  20. 20.
    Demco, D. E., Tegenfeldt, J. and Waugh, J. S., Phys. Rev., 1975, Bll, 4133.Google Scholar
  21. 21.
    Horii, F., Kitamaru, R., Maeda, S., Saika, A. and Terao, Polym. Bull., 1985,13, 179.Google Scholar
  22. 22.
    Kitamaru, R. and Hyon, S.-H., J. Polym. Sci., Macromol. Rev., 1979, 14, 207.Google Scholar
  23. 23.
    Bassett, D. C. and Hodge, A. M., Proc. R. Soc., London, 1978, A359, 121; 1981, A377, 25.Google Scholar
  24. 24.
    Möller, M., Cantow, H.-J., Krüger, J. K. and Höcker, H., Polym. Bull., 1981, 5, 124.Google Scholar
  25. 25.
    Möller, M., Gronski, W., Cantow, H.-J. and Höcker, H., J. Amer. Chem. Soc., 1984,106, 5093.Google Scholar
  26. 26.
    Ando, I., Yamanobe, T., Sorita, T., Komoto, T., Sato, H., Deguchi, K. and Imanari, M., Macromolecules, 1984,17, 1955.Google Scholar
  27. 27.
    Yamanobe, T., Chujo, R. and Ando, I., Mol. Phys., 1983, 50, 1231.Google Scholar
  28. 28.
    Sorita, T., Yamanobe, T., Komomoto, T. and Ando, I., Makromol. Chem. Rapid Commun., 1984, 5, 657.Google Scholar
  29. 29.
    Kitamaru, R., Horii, F. and Murayama, K., Macromolecules, 1986, 19, 6360.Google Scholar
  30. 30.
    Axelson, D. E., Mandelkern, L., Popli, R. and Mathien, P., J. Polym. Sci., Polym. Phys. Ed., 1983, 21, 2319.Google Scholar
  31. 31.
    Kitamaru, R., Horii, R. and Hyon, S.-H., J. Polym. Sci., Polym. Phys. Ed., 1977,15, 821.Google Scholar
  32. 32.
    Horii, F. and Kitamaru, R., J. Polym. Sci., Polym. Phys. Ed., 1978, 16, 265.Google Scholar
  33. 33.
    Kitamaru, R. and Horii, F., Advances In Polymer Science, Vol. 26, 1978, Springer-Verlag, Berlin, pp. 137–78.Google Scholar
  34. 34.
    Schröter, B. and Posern, A., Makromol. Chem. Rapid Commun., 1982, 3, 623.Google Scholar
  35. 35.
    Flory, P. J., J. Amer. Chem. Soc., 1962, 84, 2857.Google Scholar
  36. 36.
    Flory, P. J., Yoon, D. Y. and Dil, K. A., Macromolecules, 1984, 17, 862.Google Scholar
  37. 37.
    Komoroski, R. A., Maxfield, J., Sakaguchi, F. and Mandelkern, L., Macromolecules, 1977,10, 550.Google Scholar
  38. 38.
    Horii, F., Murayama, K. and Kitamaru, R., ACS Polym. Prepr., 1983, 24, 384.Google Scholar
  39. 39.
    Torchia, D. A., J. Magn. Reson., 1978, 30, 613.Google Scholar
  40. 40.
    Voigt-Martin, I. G. and Mandelkern, L., J. Polym. Sci., Polym. Phys. Ed., 1981,19, 1769.Google Scholar
  41. 41.
    Flory, P. J. and Yoon, D. Y., Nature (London) 1978, 272, 226.Google Scholar
  42. 42.
    Yoon, D. Y., J Appl. Cryst., 1978,11, 531.Google Scholar
  43. 43.
    Gast, J. C., Atalla, R. H. and Mckelvey, R. D., Carbohydr. Res., 1980, 84, 137.Google Scholar
  44. 44.
    Atalla, R. H., Gast, J. C., Sindorf, D. W., Bartuska, V. J. and Maciel, G. E., J. Amer. Chem. Soc., 1980,102, 3249.Google Scholar
  45. 45.
    Earl, W. L. and VanderHart, D. L., J. Amer. Chem. Soc., 1980,102, 3251.Google Scholar
  46. 46.
    Horii, F., Hirai, A. and Kitamaru, R., Polym. Bull., 1982, 8, 163.Google Scholar
  47. 47.
    Horii, F., Hirai, A. and Kitamaru, R., ACS Symposium Series, 1983, 260, 28.Google Scholar
  48. 48.
    Horii, F., Hirai, A. and Kitamaru, R., J. Carbohydr. Chem., 1984, 3, 641.Google Scholar
  49. 49.
    VanderHart, D. L., J. Magn. Reson., 1981, 44, 117.Google Scholar
  50. 50.
    . Imashiro, F., Maeda, S., Takegoshi, K., Terao, T. and Saika, A., Chem. Phys. Lett., 1982, 92, 642; 1983, 99, 189.CrossRefGoogle Scholar
  51. 51.
    Terao, T., Maeda, S. and Saika, S., Macromolecules, 1983, 16, 1535.Google Scholar
  52. 52.
    Pfeffer, P. E., Valentine, K. M., and Parrish, F. W., J. Amer. Chem. Soc., 1979,101, 1265.Google Scholar
  53. 53.
    Pfeffer, P. E., Hicks, K. B., Frey, M. H. and Opella, S. J., J. Carbohydr. Chem., 1984, 3, 197.Google Scholar
  54. 54.
    Brown, G. M. and Levy, H. A., Science, 1965,147, 1038.Google Scholar
  55. 55.
    Chu, S. S. and Jeffrey, G. A., Acta Cryst., 1968, B24, 830.Google Scholar
  56. 56.
    Fries, D. C., Rao, S. T. and Sundaralingam, M., Acta Cryst., 1971, B27, 994.Google Scholar
  57. 57.
    Hirotsu, K. and Shimada, A., Bull. Chem. Soc. Japan, 1974, 47, 1872.Google Scholar
  58. 58.
    Horii, F., Hirai, A. and Kitamaru, R., Bull. Magn. Reson., 1983, 5, 190.Google Scholar
  59. 59.
    Earl, W. L. and VanderHart, D. L., Macromolecules, 1981, 14, 570.Google Scholar
  60. 60.
    Kwoh, D. L. W., Bhattacharjee, S. S., Cael, J. J. and Patt, S. L., TAPPI Proc., 1982, 114.Google Scholar
  61. 61.
    Hirai, A., Horii, F. and Kitamaru, R., J. Polym. Sci., Polym. Phys. Ed., 1980,18, 1801.Google Scholar

Copyright information

© Elsevier Applied Science Publishers LTD 1988

Authors and Affiliations

  • Ryozo Kitamaru
    • 1
  1. 1.Institute for Chemical ResearchKyoto UniversityJapan

Personalised recommendations