Skip to main content

On the Role of Myocardial AMP-Deaminase

  • Chapter
Book cover Myocardial Energy Metabolism

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 91))

Abstract

In this chapter the AMP-deaminase activity in hearts of different species is compared with that in skeletal muscle. Some features of the well-characterized skeletal muscle enzyme, like binding to myosin filaments and deficiencies in humans, are described. Experimental models to study the role of cardiac AMP-deaminase, i.e., isolated enzyme, cardiomyocytes and isolated perfused heart, are discussed. Substrate saturation kinetics and regulatory effects of nucleotides, phosphate, and activated fatty acids are summarized; their significance for in vivo regulation considered. In addition the behavior of AMP-deaminase under various adenylate energy charges and its implications for the regulation of enzyme in ischemic tissue is examined. Myocardial AMP-deaminase is shown to be a tissue-specific isoenzyme, with different kinetic and regulatory forms. Developmental changes of AMP-deaminase and other enzymes of adenylate metabolism enzymes in myocardial cells are reviewed. The flux through the pathway catalyzed by AMP-deaminase in normoxic and ischemic heart is analyzed. A probable function of the reaction - preservation of purine nucleotides inside the myocardial cell - is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg PW, De Tombe PP, Harmsen E, De Jong JW: Myocardial S-adenosylhomocysteine hydrolase is important for adenosine production during normoxia. Biochim Biophys Acta 840:393–400, 1985

    PubMed  CAS  Google Scholar 

  2. Achterberg PW, Harmsen E, De Jong JW: Adenosine deaminase inhibition and myocardial purine release during normoxia and ischemia. Cardiovasc Res 19:593–598, 1985

    Article  PubMed  CAS  Google Scholar 

  3. Ashby B, Frieden C: Interactions of AMP-aminohydrolase with myosin and its subfragments. J Biol Chem 252:1869–1872, 1977

    PubMed  CAS  Google Scholar 

  4. Barsacchi R, Ranieri-Raggi M, Bergamini C, Raggi A: Adenylate metabolism in the heart. Regulatory properties of rabbit cardiac adenylate deaminase. Biochem J 182:361–366, 1979

    PubMed  CAS  Google Scholar 

  5. Barshop BA, Frieden C: Analysis of the interaction of rabbit skeletal muscle adenylate deaminase with myosin subfragments. A kinetically regulated system. J Biol Chem 259:60–66, 1984

    PubMed  CAS  Google Scholar 

  6. Bittar N, Shug AL, Koke JR, Folts JD, Shrago ES: Inhibited adenine nucleotide translocation in mitochondria isolated from ischemic myocardium. Recent Adv Stud Cardiac Struct Metab 7:137–143, 1976

    CAS  Google Scholar 

  7. Brody TG, Costello JF: Activation and inhibition of AMP deaminase by GTP and ATP. Biochim Biophys Acta 350:455–460, 1974

    Google Scholar 

  8. Bünger R: Thermodynamic state of cytosolic adenylates in guinea pig myocardium. Energy-linked adaptive changes in free adenylates and purine nucleoside release. In: Gerlach E, Becker BF, eds: Topics and perspectives in adenosine research. Berlin: Springer Verlag, 1987:223–235

    Google Scholar 

  9. Bünger R, Soboll S: Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses. Eur J Biochem 159:203–213, 1986

    Article  PubMed  Google Scholar 

  10. Burger R, Lowenstein JM: Adenylate deaminase. III. Regulation of deamination pathways in extracts of rat heart and lung. J Biol Chem 242:5281–5288, 1967

    PubMed  CAS  Google Scholar 

  11. Cheung JY, Thompson IG, Bonventre JV: Effects of extracellular calcium removal and anoxia on isolated rat myocytes. Am J Physiol 243:C184–C190, 1982

    PubMed  CAS  Google Scholar 

  12. Chung L, Bridger WA: Activation of rabbit cardiac AMP aminohydrolase by ADP. A component of a mechanism guarding against ATP depletion. FEBS Lett 64:338–340, 1976

    Article  PubMed  CAS  Google Scholar 

  13. Conway EJ, Cooke R: LIX. The deaminase of adenosine and adenylic acid in blood and tissues. Biochem J 33:479–492, 1939

    PubMed  CAS  Google Scholar 

  14. Cooper J, Trinick J: Binding and location of AMP deaminase in rabbit psoas muscle myofibrils. J Mol Biol 177:137–152, 1984

    Article  PubMed  CAS  Google Scholar 

  15. Deuticke B, Gerlach E: Abbau freier Nucleotide in Herz, Skeletmuskel, Gehirn und Leber der Ratte bei Sauerstoffmangel. Pflügers Arch 229:239–254, 1966

    Article  Google Scholar 

  16. Dow JW, Harding NGL, Powell T: Isolated cardiac myocytes. I. Preparation of adult myocytes and their homology with intact tissue. Cardiovasc Res 15:483–514, 1981

    Article  PubMed  CAS  Google Scholar 

  17. Fishbein WN: Myoadenylate deaminase deficiency: Inherited and acquired forms. Biochem Med 33:158–169, 1985

    Article  PubMed  CAS  Google Scholar 

  18. Frick GP, Lowenstein JM: Studies of 5′-nucleotidase in the perfused rat heart. J Biol Chem 251:6372–6378, 1976

    PubMed  CAS  Google Scholar 

  19. Garfinkel L, Altschuld RA, Garfinkel D: Magnesium in cardiac energy metabolism. J Mol Cell Cardiol 18:1003–1013, 1986

    Article  PubMed  CAS  Google Scholar 

  20. Geisbuhler T, Altschuld RA, Trewyn RW, Ansel AZ, Lamka K, Brierley GP: Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ Res 54:536–546, 1984

    PubMed  CAS  Google Scholar 

  21. Gilloteaux J: Ader M AMP deaminase histoenzymology in hamster skeletal muscle. Acta Histochem 73:47–51, 1983

    PubMed  CAS  Google Scholar 

  22. Greger J, Fabianowska K: Relationship between 5′-nucleotidase, adenosine deaminase, AMP deaminase, ATP-(Mg2+)-ase activities and dTMP kinase activity in rat liver mitochondria. Enzyme 24:54–60, 1979

    PubMed  CAS  Google Scholar 

  23. Harmsen E, Verwoerd TC, Achterberg PW, De Jong JW: Regulation of porcine heart and skeletal muscle AMP-deaminase by adenylate energy charge. Comp Biochem Physiol 75B:1–3, 1983

    CAS  Google Scholar 

  24. Hearse DJ, Crome R, Yellon DM, Wyse R: Metabolic and flow correlates to myocardial ischemia. Cardiovasc Res 17:452–458, 1983

    Article  PubMed  CAS  Google Scholar 

  25. Hohl C, Ansel A, Altschuld RA, Brierley GP: Contracture of isolated rat heart cells on anaerobic to aerobic transition. Am J Physiol 242:H1022–H1030, 1982

    PubMed  CAS  Google Scholar 

  26. Humphrey SM, Holliss DG, Seelye RN: Myocardial adenine pool depletion and recovery of mechanical function following ischemia. Am J Physiol 248:H644–H651, 1985

    PubMed  CAS  Google Scholar 

  27. Itoh R, Oka J, Ozasa H: Regulation of heart cytosol 5′-nucleotidase by adenylate energy charge. Biochem J 235:847–851, 1986

    PubMed  CAS  Google Scholar 

  28. Kaletha K: Hen heart AMP-deaminase - The combined effect of ATP, ADP and orthophosphate on the enzyme activity. Int J Biochem 16:83–85, 1984

    Article  PubMed  CAS  Google Scholar 

  29. Kaletha K, Bogdanowicz S, Raffin J-P: Regulatory properties of pigeon heart muscle AMP deaminase. Biochimie 69:117–123, 1987

    Article  PubMed  CAS  Google Scholar 

  30. Kaletha K, Skladanowski A: Regulatory properties of rat heart AMP deaminase. Biochim Biophys Acta 568:80–90, 1979

    PubMed  CAS  Google Scholar 

  31. Kaletha K, Skladanowski A: Regulatory properties of 14 day embryo and adult hen heart AMP-deaminase. Int J Biochem 16:75–81, 1984

    Article  PubMed  CAS  Google Scholar 

  32. Kaletha K, Skladanowski A, Bogdanowicz S, Zydowo M: Purification and some regulatory properties of human heart adenylate deaminase. Int J Biochem 10:925–929, 1979

    Article  PubMed  CAS  Google Scholar 

  33. Kao RL, Christman EW, Luh SL, Kraubs JM, Tylers GF, Williams EH: The effects of insulin and anoxia on the metabolism of isolated mature rat cardiac myocytes: Arch Biochem Biophys 203:587–599, 1980

    Article  PubMed  CAS  Google Scholar 

  34. Kawaguchi A, Bloch K: Inhibition of glutamate dehydrogenase and malate dehydrogenase by palmitoyl coenzyme A. J Biol Chem 251:1406–1412, 1976

    PubMed  CAS  Google Scholar 

  35. Kimes BW, Brandt BL: Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381, 1976

    Article  PubMed  CAS  Google Scholar 

  36. Langendorff O: Untersuchungen am überlebenden Saugethierherzen. Arch Gesam Physiol 61:291–332, 1895

    Article  Google Scholar 

  37. Lowenstein JM: Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev 52:382–414, 1972

    CAS  Google Scholar 

  38. Lowenstein JM, Yu M-K, Naito Y: Regulation of adenosine metabolism by 5′-nucleotidases. In: Berne RM, Rall TW, Rubio R, eds: Regulatory function of adenosine. The Hague: Nijhoff Publ, 1983:117–132

    Google Scholar 

  39. Meghji P, Holmquist CA, Newby AC: Adenosine formation and release from neonatal-rat heart cells in culture. Biochem J 229:799–805, 1985

    PubMed  CAS  Google Scholar 

  40. Müller MM, Rumpold H, Schopf G, Zilla P: Changes of purine metabolism during differentiation of rat heart myoblasts. In: Nyhan WL, Thompson LF, Watts RWE, eds: Purine and pyrimidine metabolism in man. New York: Plenum Press, 1986:475–484

    Google Scholar 

  41. Nakatsu K, Drummond GI: Adenylate metabolism and adenosine formation in the heart. Am J Physiol 223:1119–1127, 1972

    PubMed  CAS  Google Scholar 

  42. Ogasawara N, Goto H, Watanabe T: Isozymes of rat AMP deaminase. Biochim Biophys Acta 403:530–537, 1975

    PubMed  CAS  Google Scholar 

  43. Ogasawara N, Goto H, Watanabe T: Isozymes of AMP deaminase. In: Müller MM, Kaiser E, Seegmiller JE, eds: Purine metabolism in man – II. Regulation of pathways and enzyme defects. New York: Plenum Press, 1977:212–222

    Google Scholar 

  44. Ogasawara N, Goto H, Yamada Y: Effects of various ligands on interaction of AMP deaminase with myosin. Biochim Biophys Acta 524:442–446, 1978

    PubMed  CAS  Google Scholar 

  45. Ogasawara N, Goto H, Yamada Y: AMP deaminase isozymes in rabbit red and white muscles and heart. Comp Biochem Physiol 76B:471–473, 1983

    CAS  Google Scholar 

  46. Ogasawara N, Goto H, Yamada Y, Watanabe T: Distribution of AMP-deaminase isozymes in rat tissues. Eur J Biochim 87:297–304, 1978

    Article  CAS  Google Scholar 

  47. Ogasawara N, Goto H, Yamada Y, Watanabe T, Asano T: AMP deaminase isozymes in human tissues. Biochim Biophys Acta 714:298–306, 1982

    PubMed  CAS  Google Scholar 

  48. Ogawa H, Shiraki H, Matsuda Y, Nakagawa H: Interaction of adenylosuccinate synthetase with Factin. Eur J Biochem 85:331–337, 1978

    Article  PubMed  CAS  Google Scholar 

  49. Parker JC, Smith EE, Jones CE: The role of nucleoside and nucleobase metabolism in myocardial adenine nucleotide regeneration after cardiac arrest. Circ Shock 3:11–20, 1976

    CAS  Google Scholar 

  50. Pekkel’ VA, Kirkel’ AZ: Purification and certain physicochemical properties of myocardial adenylate deaminase. Biokhimiya (Engl Transl) 44:1311–1319, 1979

    Google Scholar 

  51. Pekkel’ VA, Kirkel’ AZ, Gorkin VZ: Kinetic and regulatory properties of myocardial adenylate deaminase. Biokhimiya (Engl Transl) 45:290–298, 1980

    Google Scholar 

  52. Purzycka J: AMP and adenosine aminohydrolases in rat tissues. Acta Biochim Polon 9:83–93, 1962

    PubMed  CAS  Google Scholar 

  53. Purzycka-Preis J, Prus E, Wozniak M, Zydowo M: Modification by liposomes of the adenosine triphosphate-activating effect on adenylate deaminase from pig heart. Biochem J 175:607–612, 1978

    PubMed  CAS  Google Scholar 

  54. Purzycka-Preis J, Wrzolkowa T, Pawlak-Byczkowska E, Zydowo M: Developmental changes of AMP-deaminase activity in chick heart muscle. Int J Biochem 6:885–887, 1975

    Article  CAS  Google Scholar 

  55. Raggi A, Ronca-Testoni S, Ronca G: Muscle AMP aminohydrolase. II. Distribution of AMP aminohydrolase and creatine kinase activities in skeletal muscle. Biochim Biophys Acta 178:619–622, 1969

    PubMed  CAS  Google Scholar 

  56. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB: Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251:H1306–H1315, 1986

    PubMed  CAS  Google Scholar 

  57. Richards EG, Chung C-S, Menzel DB, Olcott HS: Chromatography of myosin on diethylaminoethyl-Sephadex. Biochemistry 6:528–540, 1967

    Article  PubMed  CAS  Google Scholar 

  58. Rubio R, Berne RM, Dobson JG Jr: Sites of adenosine production in cardiac and skeletal muscle. Am J Physiol 225:938–953, 1973

    PubMed  CAS  Google Scholar 

  59. Sabina RL, Swain JL, Olanow CW, Bradley WG, Fishbein WN, DiMauro S, Holmes EW: Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J Clin Invest 73:720–730, 1984

    Article  PubMed  CAS  Google Scholar 

  60. Saleem Y, Niveditha T, Sadasivudu B: AMP deaminase, 5′-nucleotidase and adenosine deaminase in rat myocardial tissue in myocardial infarction and hypothermia. Experientia 38:776–777, 1982

    Article  PubMed  CAS  Google Scholar 

  61. Sammons DW, Chilson OP: AMP-deaminase: Stage-specific isoenzymes in differentiating chick muscle. Arch Biochem Biophys 191:561–570, 1978

    Article  PubMed  CAS  Google Scholar 

  62. Scholte HR, Busch HFM, Luyt-Houwen IEM: Familial AMP deaminase deficiency with skeletal muscle type I atrophy and fatal cardiomyopathy. J Inher Metab Dis 4:169–170, 1981

    Article  Google Scholar 

  63. Scholte HR, Busch HFM, Meijer AEFH, Luyt-Houwen IEM, Vaandrager-Verduin MHM: The role of myoadenylate deaminase deficiency in myopathy. Klin Wochenschr 65, Suppl X:26, 1987 (Abstr)

    Google Scholar 

  64. Schoutsen B, De Jong JW: Age-dependent increase in xanthine oxidoreductase differs in various heart cell types. Circ Res 61:604–607, 1987

    PubMed  CAS  Google Scholar 

  65. Schrader J: Metabolism of adenosine and sites of production in the heart. In: Berne RM, Rall TW, Rubio R, eds: Regulatory function of adenosine. The Hague: Nijhoff Publ, 1985:133–156

    Google Scholar 

  66. Shiraki H, Miyamoto S, Matsuda Y, Momose E, Nakagawa H: Possible correlation between binding of muscle type AMP deaminase to myofibrils and ammoniagenesis in rat skeletal muscle on electrical stimulation. Biochem Biophys Res Commun 100:1099–1103, 1981

    Article  PubMed  CAS  Google Scholar 

  67. Shiraki H, Ogawa H, Matsuda Y, Nakagawa H: Interaction of rat muscle AMP deaminase with myosin. I. Biochemical study of the interaction of AMP deaminase and myosin in rat muscle. Biochim Biophys Acta 566:335–344, 1979

    PubMed  CAS  Google Scholar 

  68. Shiraki H, Ogawa H, Matsuda Y, Nakagawa H: Interaction of rat muscle AMP deaminase with myosin. II. Modification of the kinetic and regulatory properties of rat muscle AMP deaminase by myosin. Biochim Biophys Acta 566:345–352, 1979

    PubMed  CAS  Google Scholar 

  69. Skladanowski A, Kaletha K, Zydowo M: Inhibition of AMP-deaminase from beef heart by palmitoyl and stearyl-CoA. Int J Biochem 9:43–45, 1978

    Article  PubMed  CAS  Google Scholar 

  70. Skladanowski A, Kaletha K, Zydowo M: Potassium-dependent regulation by ATP and ADP of AMP-deaminase from beef heart. Int J Biochem 10:177–181, 1979

    Article  PubMed  CAS  Google Scholar 

  71. Skladanowski A, Kaletha K, Zydowo M: Hydro- and thermodynamic properties of bovine heart AMP-deaminase. Int J Biochem 13:865–869, 1981

    Article  PubMed  CAS  Google Scholar 

  72. Smiley KL, Berry A, Suelter CH: An improved purification, crystallization and some properties of rabbit muscle 5′-adenylic acid deaminase. J Biol Chem 242:2502–2506, 1967

    PubMed  CAS  Google Scholar 

  73. Smith L, Powell G: The critical micelle concentration of some physiologically important fatty acyl-coenzyme A’s as a function of chain length. Arch Biochem Biophys 244:357–360, 1986

    Article  PubMed  CAS  Google Scholar 

  74. Solano C, Coffee CJ: Differential response of AMP-deaminase isozymes to changes in the adenylate energy charge. Biochem Biophys Res Commun 85:564–571, 1978

    Article  PubMed  CAS  Google Scholar 

  75. Taegtmeyer H: On the role of the purine nucleotide cycle in the isolated working rat heart. J Mol Cell Cardiol 17:1013–1018, 1985

    Article  PubMed  CAS  Google Scholar 

  76. Takala T, Hiltunen JK, Hassinen IE: The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acids catabolism in isolated perfused rat heart. Biochem J 192:285–295, 1980

    PubMed  CAS  Google Scholar 

  77. Turner DC, Walliman T, Eppenberger HM: A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci (USA) 70:702–705, 1973

    Article  CAS  Google Scholar 

  78. Weber G, Lea MA, Stamm NB: Sequential feedback inhibition and regulation of liver carbohydrate metabolism through control of enzyme activity. Adv Enzyme Regul 6:101–107, 1968

    Article  PubMed  CAS  Google Scholar 

  79. Zielke CL, Suelter CH: purine, Purine nucleoside, and purine nucleotide aminohydrolases. In: Boyer PD, ed: The enzymes. Vol IV - Hydrolysis. Other C-N bonds, phosphate esters. New York: Acad Press, 1971:47–78

    Google Scholar 

  80. Zoref-Shani E, Kessler-Icekson G, Wasserman L, Sperling O: Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures. Biochim Biophys Acta 804:161–168, 1984

    Article  PubMed  CAS  Google Scholar 

  81. Zoref-Shani E, Shainberg A, Sperling O: Alteration in purine nucleotide metabolism during muscle differentation in vitro. Biochem Biophys Res Commun 116:507–512, 1983

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Skladanowski, A.C. (1988). On the Role of Myocardial AMP-Deaminase. In: De Jong, J.W. (eds) Myocardial Energy Metabolism. Developments in Cardiovascular Medicine, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1319-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1319-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7087-4

  • Online ISBN: 978-94-009-1319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics