Skip to main content

Energy Metabolism of Adult Cardiomyocytes

  • Chapter
Myocardial Energy Metabolism

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 91))

  • 149 Accesses

Abstract

By now the basic features of the energy metabolism of isolated cardiomyocytes have been described. Unstimulated cardiomyocytes are quiescent and exhibit the characteristics of cardiac metabolism at basal energie demand. Their energetic demand, however, can be stimulated to the maximal rates of the physiological range. As oxidative substrates fatty acids are preferred to lactate and glucose. The uptake kinetics for these three substrates have been characterized. For glucose and lactate defined transport mechanisms are identified, for fatty acids a purely physical diffusion process is also discussed. Under anoxia, energy production falls short of energy supply. Already during the reversible phase of hypoxic injury, cardiomyocytes have some cytosolic enzyme release. It is hypothesized that both release of enzymes and development of rigor are causelly related to changes in the free energy change of cytosolic ATP hydrolysis rather than in absolute ATP concentrations. Loss of Ca2+ control follows energetic exhaustion At cytosolic Ca2+ levels beyond 3 uM, it becomes irreversible. In detail the relation between energy metabolism and onset of irreversible hypoxic cell injury is not sufficiently understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed SA, Williamson JR, Roberts E, Clark RE, Sobel BE: The association of increased plasma MB CPK activity and irreversible ischemic myocardial injury in the dog. Circulation 54:187–193, 1976

    PubMed  CAS  Google Scholar 

  2. Allshire A, Piper HM, Cuthbertson KSR, Cobbold PH: Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J 244:381–385, 1987

    PubMed  CAS  Google Scholar 

  3. Arnold G, Lochner W: Die Temperaturabhängigkeit des Sauerstoffverbrauchs stillgestellter künstlich perfundierter Warmblüterherzen zwischen 34°C und 4°C. Pflügers Arch 284:169–175, 1967

    Article  Google Scholar 

  4. Borgers M, Piper HM: Ca2+-shifts in anoxic cardiac myocytes. A cytochemical study. J Mol Cell Cardiol 18:439–448, 1986

    Article  PubMed  CAS  Google Scholar 

  5. Bretschneider HJ, Gebhard MM, Preusse CJ: Cardioplegia. Principles and problems. In: Sperelakis N, ed: Physiology and pathophysiology of the heart. The Hague: Nijhoff Publ, 1986:605–616

    Google Scholar 

  6. Bütikofer P, Ott P: The influence of cellular ATP levels on dimyristoylphosphatidylcholine-induced release of vesicles from human erythrocytes. Biochim Biophys Acta 821:91–96, 1985

    Article  PubMed  Google Scholar 

  7. Carafoli E: The homeostasis of calcium in heart cells. J Mol Cell Cardiol 17:203–212, 1985

    Article  PubMed  CAS  Google Scholar 

  8. Chen V, McDonough KH, Spitzer JJ: Effects of insulin on glucose metabolism in isolated heart myocytes from adult rats. Biochim Biophys Acta 846:398–404, 1985

    Article  PubMed  CAS  Google Scholar 

  9. Cheung JY, Leaf A, Bonventre JV: Mitochondrial function and intracellular calcium in anoxic cardiac myocytes. Am J Physiol 250:C18–C25, 1986

    PubMed  CAS  Google Scholar 

  10. Cobbold PH, Bourne PK: Aequorin measurements of free calcium in single hearts cells. Nature 312:444–446, 1984

    Article  PubMed  CAS  Google Scholar 

  11. DeGrella RF, Light RJ: Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. I. Kinetics of homologous fatty acids. J Biol Chem 255:9731–9738, 1980

    PubMed  CAS  Google Scholar 

  12. DeGrella RF, Light RJ: Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. II. Inhibition by albumin and fatty acid homologues, and the effect of temperature and metabolic reagents. J Biol Chem 255:9739–9745, 1980

    PubMed  CAS  Google Scholar 

  13. Dennis SC, Kohn MC, Anderson GJ, Garfinkel D: Kinetic analysis of monocarboxylate uptake into perfused rat hearts. J Mol Cell Cardiol 17:987–995, 1985

    Article  PubMed  CAS  Google Scholar 

  14. Eckel J, Pandalis G, Reinauer H: Insulin action on the glucose transport system in isolated cardiocytes from adult rat. Biochem J 212:385–392, 1983

    PubMed  CAS  Google Scholar 

  15. Eisenberg E, Hill TL: A cross-bridge model of muscle contraction. Progr Biophys Mol Biol 33:55–82, 1978

    Article  CAS  Google Scholar 

  16. Finch SAE, Piper HM, Spieckermann PG, Stier A: Anoxia influences the lateral diffusion of a lipid probe in the plasma membrane of isolated cardiac myocytes. Basic Res Cardiol 80, Suppl 1:145–152, 1985

    Google Scholar 

  17. Fiolet JWT, Baartscheer A, Schumacher CA, Coronel R, Ter Welle HF: The change of the free energy of ATP-hydrolysis during global ischemia and anoxia in the rat heart. J Mol Cell Cardiol 16:1023–1036, 1985

    Article  Google Scholar 

  18. Gebhard MM, Denkhaus H, Sakai K, Spieckermann PG: Energy metabolism and enzyme release. J Mol Med 2:271–283, 1977

    CAS  Google Scholar 

  19. Gerards P, Graf W, Kammermeier H: Glucose transfer studies in isolated cardiocytes of adult rats. J Mol Cell Cardiol 14:141–149, 1982

    Article  PubMed  CAS  Google Scholar 

  20. Hansford RG: Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes. Biochem J 241:145–151, 1987

    PubMed  CAS  Google Scholar 

  21. Haworth RA, Berkhoff HA: The control of sugar uptake by metabolic demand in isolated adult rat heart cells. Circ Res 58:157–165, 1986

    PubMed  CAS  Google Scholar 

  22. Haworth RA, Goknur AB, Hunter DR, Hegge JO, Berkhoff HA: Inhibition of calcium influx in isolated adult rat heart cells by ATP depletion. Circ Res 60:586–594, 1987

    PubMed  CAS  Google Scholar 

  23. Haworth RA, Hunter DR, Berkhoff HA: Contracture in isolated adult rat heart cells: role of Ca2+, ATP and compartmentation. Circ Res 49:1119–1128, 1981

    PubMed  CAS  Google Scholar 

  24. Haworth RA, Hunter DR, Berkhoff HA: Heterogenous response of isolated heart cells to insulin. Arch Biochem Biophys 233:106–114, 1984

    Article  PubMed  CAS  Google Scholar 

  25. Haworth RA, Hunter DR, Berkhoff HA, Moss RL: Metabolic cost of the stimulated beating of isolated adult heart cells in suspension. Circ Res 52:342–351, 1983

    PubMed  CAS  Google Scholar 

  26. Hearse DJ, Chain EB: The role of glucose in the survival and recovery of the anoxic isolated perfused rat heart. Biochem J 128:1125–1133, 1972

    PubMed  CAS  Google Scholar 

  27. Hearse DJ, Garlick PB, Humphrey SM: Ischemic contracture of the myocardium: Mechanisms and prevention. Am J Cardiol 39:986–993, 1977

    Article  PubMed  CAS  Google Scholar 

  28. Higgins TJC, Allsopp D, Bailey PJ, D’Souza EDA: The relationship between glycolysis, fatty acid metabolism and membrane integrity in neonatal myocytes. J Mol Cell Cardiol 13:599–615, 1981

    Article  PubMed  CAS  Google Scholar 

  29. Hiltunen JK, Hassinen IE: Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Biochim Biophys Acta 440:377–390, 1976

    Article  PubMed  Google Scholar 

  30. Holubarsch C: Force generation in experimental tetanus, KCl contracture and oxygen and glucose deficiency contracture in mammalian myocardium. Pflügers Arch 396:277–284, 1983

    Article  PubMed  CAS  Google Scholar 

  31. Hue L, Rider M: Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J 245:313–324, 1987

    PubMed  CAS  Google Scholar 

  32. Hütter JF, Piper HM, Spieckermann PG: Kinetic analysis of myocardial fatty acid oxidation suggesting an albumin receptor mediated uptake process. J Mol Cell Cardiol 16:219–226, 1984

    Article  PubMed  Google Scholar 

  33. Idell-Wenger JA, Neely JR: Regulation of uptake and metabolism of fatty acids by muscle. In: Dietschy L, Gotto AM, Ontko JA, eds: Disturbances in lipid and lipoprotein metabolism. Bethesda: American Physiological Society, 1978:269–284

    Google Scholar 

  34. Jacobson SL, Piper HM: Cell cultures of adult cardiomyocytes as models of the myocardium. J Mol Cell Cardiol 18:439–448, 1986

    Article  Google Scholar 

  35. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA: Relation between high energy phosphate and lethal injury in myocardial injury in the dog. Am J Pathol 92:187–241, 1978

    PubMed  CAS  Google Scholar 

  36. Kammermeier H, Wein B, Graf W: Characteristics of lactate transfer in isolated cardiac myocytes. Basic Res Cardiol 80, Suppl 1:57–60, 1985

    PubMed  CAS  Google Scholar 

  37. Kao RL, Christman EW, Luh SL, Krauhs JM, Tyers GF, Williams EH: The effect of insulin and anoxia on the metabolism of isolated mature rat cardiac myocytes. Arch Biochem Biophys 203:587–599, 1980

    Article  PubMed  CAS  Google Scholar 

  38. Karnieli E, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW: Insulin stimulated translocation of glucose transport systems in the isolated rat adipose cell. J Biol Chem 256:4772–4777, 1981

    PubMed  CAS  Google Scholar 

  39. Katz AM, Tada M: The “stone heart” and other challenges to the biochemist. Am J Cardiol 39: 1073–1077, 1977

    Article  PubMed  CAS  Google Scholar 

  40. Kübier W, Spieckermann PG: Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1:351–377, 1970

    Article  Google Scholar 

  41. McDonough KH, Spitzer JJ: Effects of hypoxia and reoxygenation on adult rat heart cell metabolism. Proc Soc Exp Biol Med 173:519–526, 1983

    PubMed  CAS  Google Scholar 

  42. Morgan HE, Henderson MJ, Regen DM, Park CR: Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem 236:253–261, 1961

    PubMed  CAS  Google Scholar 

  43. Neely JR, Grotyohann LW: Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824, 1984

    PubMed  CAS  Google Scholar 

  44. Neely JR, Liebermeister H, Morgan HE: Effect of pressure development on membrane transport of glucose in isolated rat heart. Am J Physiol 212:815–822, 1967

    PubMed  CAS  Google Scholar 

  45. Noy N, Donelly TM, Zakim D: Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochemistry 25:2013–2021, 1986

    Article  PubMed  CAS  Google Scholar 

  46. Orrenius S, Thor H, Rajs J, Berggren M: Isolated rat hepatocytes as an experimental tool in the study of cell injury. Effect of anoxia. Forensic Sci 8:255–263, 1976

    Article  PubMed  CAS  Google Scholar 

  47. Piper HM, Probst I, Schwartz P, Hütter JF, Spieckermann PG: Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol 14:397–412, 1982

    Article  PubMed  CAS  Google Scholar 

  48. Piper HM, Schwarz P, Hütter JF, Spieckermann PG: Energy metabolism and enzyme release of cultured adult rat heart muscle cells during anoxia. J Mol Cell Cardiol 16:995–1007, 1984

    Article  PubMed  CAS  Google Scholar 

  49. Piper HM, Schwartz P, Siegmund B: Energy metabolism and hypoxic injury in cardiomyocytes. In: Piper HM, Isenberg G, eds: Isolated adult cardiomyocytes. Boca Raton: CRC Press, in press

    Google Scholar 

  50. Piper HM, Spahr R, Schweickhardt C, Hunneman D: Importance of endogenous substrates for cultured adult cardiac myocytes. Biochim Biophys Acta 883:531–541, 1986

    PubMed  CAS  Google Scholar 

  51. Probst I, Spahr R, Piper HM: Carbohydrate and fatty acid metabolism of adult cardiac myocytes maintained in short-term culture. Am J Physiol 250:H853–860, 1986

    PubMed  CAS  Google Scholar 

  52. Randle PJ, Tubbs PK: Carbohydrate and fatty acid metabolism. In: Berne RM, Sperelakis N, Geiger SR, eds: Handbook of physiology. Section 2, Vol I. Bethesda: American Physiological Society, 1979:805–844

    Google Scholar 

  53. Rauch B, Bode C, Piper HM, Hütter JF, Zimmerman R, Braunwell E, Hasselbach W, Kübler W: Palmitate uptake in calcium tolerant, adult rat myocardial single cells — evidence for an albumin mediated transport across sarcolemma. J Mol Cell Cardiol 19:159–166, 1987

    Article  PubMed  CAS  Google Scholar 

  54. Rose H, Kammermeier H: Contraction and metabolic activity of electrically stimulated cardiac myocytes from adult rats. Pflügers Arch 407:116–118, 1986

    Article  PubMed  CAS  Google Scholar 

  55. Rose H, Schnitzler N, Kammermeier H: Influence of metabolic rate and electrical stimulation resp. on the affinity of the glucose transporter of isolated cardiac myocytes. J Mol Cell Cardiol 19, Suppl III:80, 1987 (Abstr)

    Google Scholar 

  56. Rouslin W, Erickson JL, Solaro RJ: Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Am J Physiol 250:H503–508, 1986

    PubMed  CAS  Google Scholar 

  57. Schwartz P, Piper HM, Spahr R, Spieckermann PG: Ultrastructure of adult myocardial cells during anoxia and reoxygenation. Am J Pathol 115:349–361, 1984

    PubMed  CAS  Google Scholar 

  58. Spieckermann PG, Brückner J, Kübler W, Lohr B, Bretschneider HJ: Präischämische Belastung und Wiederbelebungszeit des Herzens. Verh Dtsch Ges Kreislauf-Forsch 35:358–364, 1968

    Google Scholar 

  59. Spieckermann PG, Norbeck H, Preusse CJ: From heart to plasma. In: Hearse DJ, de Leiris J, eds: Enzymes in cardiology: Diagnosis and research, New York: Wiley, 1979:81–95

    Google Scholar 

  60. Spieckermann PG, Piper HM: Oxygen demand of calcium-tolerant adult cardiac myocytes, Basic Res Cardiol 80, Suppl 2:71–74, 1985

    PubMed  Google Scholar 

  61. Taegtmeyer H, Hems R, Krebs HA: Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 186:701–711, 1980

    PubMed  CAS  Google Scholar 

  62. Taegtmeyer H, Roberts AFC, Raine AEG: Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol 6:864–870, 1985

    Article  PubMed  CAS  Google Scholar 

  63. Van der Vusse GJ, Little SE, Bassingthwaighte JB: Transendothelial transport of arachidonic acid and palmitic acid in the isolated rabbit heart. J Mol Cell Cardiol 19, Suppl III:100, 1987 (Abstr)

    Google Scholar 

  64. Veech RL, Lawson JWR, Cornell NW, Krebs HA: Cytosolic phosphorylation potential. J Biol Chem 254:551–561, 1979

    Google Scholar 

  65. Weber A, Murray JM: Molecular control mechanism in muscle contraction. Physiol Rev 53:613–673, 1974

    Google Scholar 

  66. Wilkinson JH, Roinson JM: Effect of ATP on release of intracellular enzymes from damaged cells. Nature 249:662–663, 1974

    Article  PubMed  CAS  Google Scholar 

  67. Williamson JR, Ford C, Illingworth J, Safer B: Coordination of citric acid cycle activity with electron transport flux. Circ Res 38, Suppl 1:39–51, 1976

    Google Scholar 

  68. Wittenberg BA, Wittenberg JB: Oxygen pressure gradient in isolated cardiac myocytes. J Biol Chem 260:6548–6554, 1985

    PubMed  CAS  Google Scholar 

  69. Zierler KL: Muscle membranes as a dynamic structure and its permeability to aldolase. Ann NY Acad Sci 75:227–234, 1958

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Piper, H.M., Siegmund, B., Spahr, R. (1988). Energy Metabolism of Adult Cardiomyocytes. In: De Jong, J.W. (eds) Myocardial Energy Metabolism. Developments in Cardiovascular Medicine, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1319-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1319-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7087-4

  • Online ISBN: 978-94-009-1319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics