Skip to main content

The Importance of the Geometry of the Heart to the Pump

  • Chapter
Starling’s Law of The Heart Revisited

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 89))

Abstract

There is evidence to support the possibility that in the intact heart muscle fibre stress and extent of shortening are homogeneous. If this is assumed to be true, a model of the left ventricle can be constructed where these properties are achieved by appropriate orientation of fibres and torsional movement of the ventricle as a whole. The original cylindrical model was developed into one which was independent of ventricular shape. The equation:

Plv = Sf/3 ln(1+Vw/Viv)

(where Plv = left ventricular pressure, Sf = fibre stress, Vw = left ventricular wall volume and Viv = left ventricular cavity volume) gives the relationship of muscle force to ventricular pressure. The equation:

Ls/LSo = [(1+x)1 + x/xx]1/3

(where x = Vlv/Vw, Ls = sarcomere length and Lso = extrapolated sarcomere length at zero cavity volume) gives the relationship of sarcomere length to ventricular cavity and wall size. The model is equally applicable to mice and elephants and gives realistic ventricular haemodynamic and muscle mechanical values. It can also accommodate the right ventricle, valves, chordae tendinae and papillary muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janz RF and Grimm AF (1972). Finite element model for the mechanical behavior of the left ventricle. Circ Res 30: 224–252.

    Google Scholar 

  2. Pao YC, Robb RA and Ritman EL (1976). Plain-strain finite-element analysis of reconstructed diastolic left ventricular cross-section. Ann Biomed Eng 4: 232–249.

    Article  PubMed  CAS  Google Scholar 

  3. Yettram AL, Vinson CA and Gibson DG (1983). Effect of myocardial fiber architecture on the behavior of the human left ventricle in diastole. J Biomed Eng 5: 321–328.

    Article  PubMed  CAS  Google Scholar 

  4. Feith TS (1979). Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J 28: 143–166.

    Article  Google Scholar 

  5. Meier GD, Ziskin MC and Bove AA (1982). Helical fibers in myocardium. Am J Physiol 243: H1–H12.

    PubMed  CAS  Google Scholar 

  6. Streeter DD, Spotnitz HM, Patel DP, Ross J and Sonnenblick EH (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24: 339–347.

    PubMed  Google Scholar 

  7. Back L (1977). Left ventricular wall and fluid dynamics of cardiac contraction. Mathemat Biosc 36: 257–297.

    Article  Google Scholar 

  8. Beyar R and Sideman S (1984). Model for left ventricular contraction combining the force length velocity relationship with the time varying elastance theory. Biophys J 45: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  9. Mirsky I (1969). Left ventricular stresses in the intact human heart. Biophys J 9: 189–208.

    Article  PubMed  CAS  Google Scholar 

  10. Weber KT, Janicki SJ and Heffner LL (1976). Left ventricular force-length relation of isovolumic and ejecting contraction. Am J Physiol 231: 337–343.

    PubMed  CAS  Google Scholar 

  11. Arts T, Veentra PC and Reneman RS (1979). A model of the mechanics of the left ventricle. Ann Biomed Eng 7: 299–318.

    Article  PubMed  CAS  Google Scholar 

  12. Arts T, Veentra PC and Reneman RS (1982). Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am J Physiol 243: H379–H390.

    PubMed  CAS  Google Scholar 

  13. Chadwick RS (1982). Mechanics of the left ventricle. Biophys J 39: 212–220.

    Article  Google Scholar 

  14. Bache RJ, McHale PA and Greenfield JC (1977). Transmural myocardial perfusion during restricted coronary inflow in the awake dog. Am J Physiol 232: H645–H651.

    PubMed  CAS  Google Scholar 

  15. Prinzen FW (1982). Gradients in myocardial bloodflow, metabolism and mechanics across the ischemic left ventricular wall. Thesis, University of Limburg, Maastricht, The Netherlands.

    Google Scholar 

  16. Bache RJ and Schwartz JS (1983). Myocardial bloodflow during exercise after gradual coronary occlusion in the dog. Am J Physiol 245: H131–H138.

    PubMed  CAS  Google Scholar 

  17. Guasp FT (1973). The cardiac muscle. Ed. Torroba, Madric Spain.

    Google Scholar 

  18. Westerhof N, Elzinga G and Van den Bosch GC (1973). Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree. Med Biol Eng 11: 710–722.

    Article  PubMed  CAS  Google Scholar 

  19. Nolan SP (1976). The normal mitral valve: patterns of instantaneous mitral valve flow and the atrial contribution to ventricular filling. In: The mitral valve, D. Kalmanson (ed.), Publ Sei Group Inc, Massachusetts, pp 137–143.

    Google Scholar 

  20. Yellin EL, Peskin C, Koeningsberg M, Matsumoto M, Laniado S, McQueen D, Shore D and Frater RWM (1981). Mechanisms of mitral valve motion during diastole.

    Google Scholar 

  21. Suga H, Hisano R, Goto Y, Yamada O and Igarashi Y (1981). Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53: 306–318.

    Google Scholar 

  22. Arts T, Veentra PC and Reneman RS (1979). A model of the mechanics of the left ventricle. Ann Biomed Eng 7: 299–318.

    Article  PubMed  CAS  Google Scholar 

  23. Streeter DD, Vaisjnav RN, Patel DJ, Spotnitz HM, Ross J and Sonnenblick EH (1970). Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10: 345–363.

    Article  PubMed  Google Scholar 

  24. McHale PA and Greenfield JC (1973). Evaluation of several geometric models for estimation of left ventricular circumferential wall stress. Circ Res 33: 303–312.

    PubMed  CAS  Google Scholar 

  25. Salisbury PF, Cross CE and Rieben PA (1963). Chordae tendineae tension. Am J Physiol 205: 385–392.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Arts, T., Reneman, R.S. (1988). The Importance of the Geometry of the Heart to the Pump. In: ter Keurs, H.E.D.J., Noble, M.I.M. (eds) Starling’s Law of The Heart Revisited. Developments in Cardiovascular Medicine, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1313-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1313-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7084-3

  • Online ISBN: 978-94-009-1313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics