Skip to main content

Intracellular Calcium Concentration Following Length Changes in Mammalian Cardiac Muscle

  • Chapter
Starling’s Law of The Heart Revisited

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 89))

Abstract

There is good evidence that activation of mammalian cardiac muscle is influenced by muscle length and that this length-dependent activation contributes to the shape of the length- tension relationship. Two mechanisms which could lead to such length-dependent activation are (i) changes in the amount of calcium supplied to the myofibrils and (ii) changes in the amount of calcium bound to the myofibrils for a given supply of calcium, e.g. by changes in the affinity of troponin for calcium. One way of studying length-dependent activation is to measure the intracellular calcium concentration in muscle during length changes. In this article we review the effects of changes in muscle length on intracellular calcium concentration in cardiac muscle and consider the mechanisms which may underlie them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guz A (1974). Chairman’s introduction. The physiological basis of Starling’s Law of the Heart. CIBA Foundation Symposium 24: 1–6. Elsevier, North-Holland.

    Google Scholar 

  2. Jewell BR (1977). A re-examination of the influence of muscle length on myocardial performance. Circ Res 40: 221–230.

    PubMed  CAS  Google Scholar 

  3. ter Keurs HEDJ (1983). Calcium and contractility. In: Cardiac Metabolism, A.J. Drake-Holland & M.I.M. Noble (eds), pp 73–99. Chichester: John Wiley and Sons Ltd.

    Google Scholar 

  4. Allen DG and Kentish JC (1985b). The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17: 821–840.

    Article  PubMed  CAS  Google Scholar 

  5. Gordon AM, Huxley AF and Julian FJ (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 184: 170–192.

    PubMed  CAS  Google Scholar 

  6. Page SG (1974). Measurements of structural parameters in cardiac muscle. In The Physiological Basis of Starling’s Law of the Heart, pp. 13–25. CIBA Foundation Symposium 24. Amsterdam: Elsevier (1968).

    Google Scholar 

  7. Fabiato A and Fabiato F (1975). Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256: 54–56.

    Article  PubMed  CAS  Google Scholar 

  8. Kentish JC, ter Keurs HEDJ, Ricciardi L, Bucx JJJ and Noble MIM (1986). Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Circ Res 58: 755–768.

    PubMed  CAS  Google Scholar 

  9. Endo M (1972). Stretch-induced increase in activation of skinned muscle fibers by calcium. Nature New Biology 237: 211–213.

    Article  PubMed  CAS  Google Scholar 

  10. Hibberd MG and Jewell BR (1982). Calcium- and length- dependent force production in rat ventricular muscle. J Physiol 329: 527–540.

    PubMed  CAS  Google Scholar 

  11. Parmley WW and Chuck L (1973). Length-dependent changes in myocardial contractile state. Am J Physiol 224: 1195–1199.

    PubMed  CAS  Google Scholar 

  12. Allen DG and Kurihara S (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327: 79–94.

    PubMed  CAS  Google Scholar 

  13. Fabiato A (1980). Sarcomere length dependence of calcium release from the sarcoplasmic reticulum of skinned cardiac cells demonstrated by differential microspectrophotometry with arsenazo III. J Gen Physiol 76: 15a.

    Google Scholar 

  14. Fabiato A (1985). Use of aequorin to demonstrate dependence of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cell on active sarcomere length. Biophysics Journal 47: 378a.

    Google Scholar 

  15. ter Keurs HEDJ, Rijnsburger WH, van Heuningen R and Nagelsmit MJ (1980). Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46: 703–714.

    PubMed  Google Scholar 

  16. Gordon AM and Pollack GH (1980). Effects of calcium on the sarcomere length-tension relation in rat cardiac muscle. Implications for the Frank-Starling mechanism. Circ Res 47: 610–619.

    PubMed  CAS  Google Scholar 

  17. Cannell MB and Allen DG (1983). A photomultiplier tube assembly for the detection of low light levels. Pflugers Archiv 398: 165–168.

    Article  PubMed  CAS  Google Scholar 

  18. Brady AJ (1966). Onset of contractility in cardiac muscle. J Physiol 184: 560–580.

    PubMed  CAS  Google Scholar 

  19. Lab MJ, Allen DG and Orchard CH (1984). The effects of shortening on myoplasmic calcium concentration and on the action potential in mammalian ventricular muscle. Circ Res 55: 825–829.

    PubMed  CAS  Google Scholar 

  20. Housmans PK, Lee NK and Blinks JR (1983a). Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science 221: 159–161.

    Article  PubMed  CAS  Google Scholar 

  21. Housmans PK, Lee NK and Blinks JR (1983b). History of loading in preceding contractions influences intracellular calcium transients in cat papillary muscle. Fed Procs 42: 573.

    Google Scholar 

  22. Ridgway EB and Gordon AM (1984). Muscle calcium transients; effects of post-stimulus length change in single fibers. J Gen Physiol 83: 75–104.

    Article  PubMed  CAS  Google Scholar 

  23. Kaufmann RL, Lab M J, Hennekes R and Krause H (1971). Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium. Pflugers Archiv 324: 100–123.

    Article  PubMed  CAS  Google Scholar 

  24. Allen DG and Kentish JC (1985a). The effects of length changes on the myoplasmic calcium concentration in skinned ferret ventricular muscle. J Physiol 366: 67P.

    Google Scholar 

  25. Julian FJ and Morgan DL (1981). Variation in muscle stiffness with tension during tension transients and constant velocity shortening in the frog. J Physiol 319: 193–203.

    PubMed  CAS  Google Scholar 

  26. Bremel RD and Weber A (1972). Cooperation within actin filaments in vertebrate skeletal muscle. Nature, New Biology 238: 97–101.

    CAS  Google Scholar 

  27. Beeler GW and Reuter H (1970). The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibers. J Physiol 207: 211–229.

    PubMed  CAS  Google Scholar 

  28. Parmley WM, Brutsaert DL and Sonnenblick EH (1969). Effects of altered loading conditions on ctractile events in isolated cat papillary muscle. Circ Res 24: 521–533.

    PubMed  CAS  Google Scholar 

  29. Jewell BR and Rovell JM (1973). Influence of previous mechanical events on the contractility of isolated papillary muscle. J Physiol 235: 715–740.

    PubMed  CAS  Google Scholar 

  30. Lakatta EG and Jewell BR (1977). Length-dependent activation: its effect on the length-tension relation in cat ventricular muscle. Circ Res 40: 251–257.

    PubMed  CAS  Google Scholar 

  31. Nichols CG (1985). The influence of ‘diastolic’ length on the contractility of isolated cat papillary muscle. J Physiol 361: 269–279.

    PubMed  CAS  Google Scholar 

  32. Allen DG, Nichols CG and Smith GL (1985). The effect of diastolic length on calcium transients in isolated ferret ventricular muscle. J Physiol 365: 57P.

    Google Scholar 

  33. Snowdowne KW and Lee NKM (1980). Subcontracture concentrations of potassium and stretch cause an increase in the activity of intracellular calcium in frog skeletal muscle. Fed Procs 39: 1733.

    Google Scholar 

  34. Lopez JR, Alamo L and Caputo C (1985). The increase in metabolic rate associated with stretching in skeletal muscle might be related to an increment in free [Ca2 +]. Biophysical Journal 47: 378a.

    Google Scholar 

  35. Guharay F and Sachs F (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352: 685–701.

    PubMed  CAS  Google Scholar 

  36. Allen DG and Smith GL (1985). The first calcium transient following shortening in isolated ferret ventricular muscle. J Physiol 366: 83P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Allen, D.G., Smith, G.L., Nichols, C.G. (1988). Intracellular Calcium Concentration Following Length Changes in Mammalian Cardiac Muscle. In: ter Keurs, H.E.D.J., Noble, M.I.M. (eds) Starling’s Law of The Heart Revisited. Developments in Cardiovascular Medicine, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1313-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1313-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7084-3

  • Online ISBN: 978-94-009-1313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics