Advertisement

Intersymbol Interference

  • Edward A. Lee
  • David G. Messerschmitt

Abstract

Chapter 6 described pulse amplitude modulation (PAM), in which a sequence of continuous-time pulses are multiplied by a sequence of symbols and combined for transmission. The output of the channel is filtered and sampled by the receiver, and the received samples are applied to a slicer to yield the detected data symbols. Inter-symbol interference results from linear amplitude and phase dispersion in the channel that broadens the pulses and causes them to interfere with one another. The Nyquist criterion specifies a frequency-domain condition on the received pulses under which there is no intersymbol interference. Generally this or a similar condition is not satisfied unless we equalize the channel, meaning roughly that we filter to compensate for the channel dispersion. Unfortunately, any equalization of amplitude distortion also enhances or amplifies any noise introduced by the channel, called noise enhancement. There is therefore a tradeoff between accurately minimizing intersymbol interference and minimizing the noise at the slicer input.

Keywords

Matched Filter Data Symbol Pulse Amplitude Modulation INTERSYMBOL Interference Linear Equalizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Shannon, “Communication in the Presence of Noise,” Proc. IRE 37 pp. 10–21 (January, 1949).MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York (1965).Google Scholar
  3. 3.
    J. G. Proakis, Digital Communications, McGraw-Hill Book Co., New York (1983).Google Scholar
  4. 4.
    S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ (1987).zbMATHGoogle Scholar
  5. 5.
    G. D. Forney, Jr., “Maximum-Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference,” IEEE Trans, on Information Theory IT-18 pp. 363–378 (May 1972).MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Abend and B. D. Fritchman, “Statistical Detection for Communication Channels with Intersymbol Interference, ” Proc. IEEE 58 pp. 779–785 (May 1970).CrossRefGoogle Scholar
  7. 7.
    M. R. Aaron and D. W. Tufts, “Intersymbol Interference and Error Probability,” IEEE Trans, on Information Theory IT-12(Jan. 1966).Google Scholar
  8. 8.
    R. W. Lucky, “Automatic Equalization for Digital Communications,” BSTJ 44 pp. 547–588 (April 1965).MathSciNetGoogle Scholar
  9. 9.
    R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, McGraw-Hill Book Co., New York (1968).Google Scholar
  10. 10.
    A. Gersho, “Adaptive Equalization of Highly Dispersive Channels for Data Transmission,” BSTJ 48 pp. 55–70(1969).zbMATHGoogle Scholar
  11. 11.
    R. W. Lucky, “Signal Filtering with the Transversal Equalizer,”Proc. Seventh Annual Allerton Conference on Circuits and System Theory, p. 792 (Oct. 1969).Google Scholar
  12. 12.
    R. D. Gitlin and S. B. Weinstein, “Fractionally-Spaced Equalization: An Improved Digital Transversal Equalizer,” BSTJ 60(2)(February, 1981).Google Scholar
  13. 13.
    S. U. H. Qureshi and G. D. Forney, Jr., “Performance Properties of a T/2 Equalizer,” NTC77 Proceedings, () Google Scholar
  14. 14.
    G. Ungerboeck, “Fractional Tap-Spacing and Consequences for Clock Recovery in Data Modems, ”IEEE Trans, on Communications, (August, 1976).Google Scholar
  15. 15.
    J. E. Mazo, “Optimum Timing Phase for an Infinite Equalizer,” BSTJ 54(l)(January, 1975).Google Scholar
  16. 16.
    S. U. H. Qureshi, “Adaptive Equalization,” pp. 640 in Advanced Digital Communications Systems and Signal Processing Techniques, ed. K. Feher, Prentice-Hall, Englewood Cliffs, N.J. (1987).Google Scholar
  17. 17.
    M. E. Austin, Decision-Feedback Equalization for Digital Communication Over Dispersive Channels, M.I.T. Lincoln Laboratory, Lexington, Mass (August 1967).Google Scholar
  18. 18.
    C. A. Belfiore and J. H. Park, “Decision Feedback Equalization,” Proceedings of the IEEE 67(8)(August, 1979).Google Scholar
  19. 19.
    D. G. Messerschmitt, “A Geometric Theory of Intersymbol Interference: Part I and II,” Bell Sys. Tech. J. 52(Nov. 1973).Google Scholar
  20. 20.
    D. G. Messerschmitt, “Design of a Finite Impulse Response for the Viterbi Algorithm and Decision Feedback Equalizer,” Proc. IEEE Int. Conf. on Communications, (June 1974).Google Scholar
  21. 21.
    R. Price, “Nonlinearly Feedback-Equalized PAM vs. Capacity for Noisy Filter Channels,” Proc. 1972 IEEE International Conf. Communications, pp. 22–12 (June 1972).Google Scholar
  22. 22.
    J. G. Proakis, “Advances in Equalization for Intersymbol Interference,” Advances in Communication Systems 4(1975).Google Scholar
  23. 23.
    G. D. Forney, Jr., “The Viterbi Algorithm,” Proceedings of the IEEE 61(3)(March, 1973).Google Scholar
  24. 24.
    J. G. Proakis, “Adaptive Nonlinear Filtering Techniques for Data Transmission,”IEEE Symposium on Adaptive Processes, Decision, and Control, p. XV.2.1 (1970).Google Scholar
  25. 25.
    A. Gersho and T. L. Lim, “Adaptive Cancellation of Intersymbol Interference for Data Transmission,” BSTJ 70 pp. 1997–2021 (November 1981).Google Scholar
  26. 26.
    D. D. Falconer and F. R. Magee, Jr., “Adaptive Channel Memory Truncation for maximum Likelihood Sequence Estimation,” Bell Sys. Tech. J. 52 p. 1541 (Nov. 1973).zbMATHGoogle Scholar
  27. 27.
    W. U. Lee and F. S. Hill, “A Maximum-Likelihood Sequence Estimator with Decision Feedback Equalization,” IEEE Trans, on Communications COM-25(9) pp. 971–979 (September 1977).Google Scholar
  28. 28.
    K. Wesolowski, “An Efficient DFE & ML Suboptimum Receiver for Data Transmission Over Dispersive Channels Using Two-Dimensional Signal Constellations,” IEEE Trans, on Communications COM-35(3) pp. 336–339 (March 1987). CorrespondenceCrossRefGoogle Scholar
  29. 29.
    J. Salz, “Optimum Mean-Square Decision Feedback Equalization,” BSTJ 52 pp. 1341–1373 (October 1973).Google Scholar
  30. 30.
    I. S. Gradshtcyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” Academic Press, (1980).Google Scholar
  31. 31.
    L.A. Zadeh and C.A. Desoer, Linear System Theory: A State Space Approach, McGraw-Hill, New York (1963).zbMATHGoogle Scholar
  32. 32.
    D. L. Duttweiler, J. E. Mazo, and D. G. Messerschmitt, “Error Propagation in Decision- Feedback Equalizer,”IEEE Trans, on Information Theory IT-20 pp. 490–497 (July 1974).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1988

Authors and Affiliations

  • Edward A. Lee
    • 1
  • David G. Messerschmitt
    • 1
  1. 1.University of California at BerkeleyUSA

Personalised recommendations