Skip to main content

Abstract

An information-bearing signal must conform to the limitations of its channel. While the bit streams we wish to transmit are inherently discrete-time, all the physical media considered in chapter 5 are continuous-time in nature. Hence, we need to represent the bit stream as a continuous-time signal for transmission, and the process of doing this is called modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. H. Cravis and T. Crater, “Engineering of T1 Carrier System Repeatered Lines,” BSTJ 42 p. 431 (March 1963).

    Google Scholar 

  2. A. Papoulis, The Fourier Integral and its Applications, McGraw-Hill Book Co., New York (1962).

    MATH  Google Scholar 

  3. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Inc. (1975).

    Google Scholar 

  4. G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise,” IEEE Trans, on Communications COM- 22(l)(January, 1974).

    Google Scholar 

  5. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York (1965).

    Google Scholar 

  6. C. R. Cahn, “Combined Digital Phase and Amplitude Modulation Communication Systems,” IRE Trans. on Communications Systems CS-8 pp. 150–154 (1960).

    Article  Google Scholar 

  7. J. C. Hancock and R. W. Lucky, “Performance of Combined Amplitude and Phase-Modulated Communication Systems,” IRE Tans. Communications Systems CS-8 pp. 232–237 (1960).

    Article  Google Scholar 

  8. C. N. Campopiano and B. G. Glazer “A Coherent Digital Amplitude and Phase Modulation Scheme,” IRE Tans. Communications Systems CS-10 pp. 90–95 (1962).

    Article  Google Scholar 

  9. R. W. Lucky and J. C. Hancock, “On the Optimum Performance of N-ary Systems Having Two Degrees of Freedom,” IRE Tans. Communications Systems CS-10 pp. 185–192 (1962).

    Article  Google Scholar 

  10. R. W. Lucky, Digital Phase and Amplitude Modulated Communication Systems, Purdue University, Lafayettle, IN (1961). Ph.D. Dissertation

    Google Scholar 

  11. G. D. Forney Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi, “Efficient Modulation for Band-Limited Channels,” IEEE Journal on Selected Areas in Communications SAC-2(5)(September 1984).

    Google Scholar 

  12. A. Gersho and V. B. Lawrence, “Multidimensional Signal Constellations for Voiceband Data Transmission,” IEEE Journal on Selected Areas in Communications SAC-2(5)(September 1984).

    Google Scholar 

  13. T. Noguchi, Y. Daido, and J. Nossek, “ Modulation Techniques for Microwave Digital Radio,” IEEE Communications Mag 24(10) p. 21 (Oct. 1986).

    Article  Google Scholar 

  14. D. Taylor and P. Hartmann, “Telecommunications by Microwave Digital Radio,” IEEE Communications Magazine 24(8) p. 11 (Aug. 1986).

    Article  Google Scholar 

  15. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, McGraw-Hill Book Co., New York (1968).

    Google Scholar 

  16. S. W. Golomb, Digital Communications with Space Applications, Prentice Hall, NJ. (1964).

    MATH  Google Scholar 

  17. J. G. Proakis, Digital Communications, McGraw-Hill Book Co., New York (1983).

    Google Scholar 

  18. M. L. Doelz and E. H. Heald, “Minimum-Shift Data Communications Systems,” U. S. Patent No. 2,977,417, (March 28, 1961). Assigned to the Collins Radio Co.

    Google Scholar 

  19. S. D. Personick, Fiber Optics Technology and Applications, Plenum Press, New York (1985).

    Google Scholar 

  20. J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, “High Performance Avalanche Photodiode with Separate Absorption, Grading, and Multiplication Regions,” Elect. Lett. 19 pp. 818–819 (September 29, 1983).

    Article  Google Scholar 

  21. M. Ross, Laser Receivers, John C. Wiley and Sons (1966).

    Google Scholar 

  22. O. E. DeLangue, “Optical Heterodyne Detection,” IEEE Spectrum, pp. 77–85 (October 1968).

    Google Scholar 

  23. W. K. Pratt, Laser Communication Systems, John C. Wiley and Sons (1969).

    Google Scholar 

  24. C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quant. Elec QE- 18 pp. 259–264 (February 1982).

    Article  Google Scholar 

  25. M. W. Fleming and A. Mooradian, “Fundamental Line Broadening of Single-Mode GaAlAs Diode Lasers ” Appl. Phys. Lett. 38 pp. 511–513 (April 1, 1981).

    Article  Google Scholar 

  26. C. Harder, K. Vahala, and A. Yariv, “Measurment of the Linewidths Enhancement Factor a of Semiconductor Lasers,” Appl. Phys. Lett. 42 pp. 328–330 (February 15,1983).

    Article  Google Scholar 

  27. J. Salz, “Coherent Lightwave Communications,” AT&T Tech. J. 64(10)(December 1985).

    Google Scholar 

  28. R. Wood, “Magnetic Recording Systems,” IEEE Proceedings 74(11) p. 1557 (Nov. 1986).

    Article  Google Scholar 

  29. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, Third Edition, McGraw-Hill Book Co., New York (1986).

    Google Scholar 

  30. S. Pasupathy, “Minimum Shift Keying: A Spectrally Efficient Modulation,” IEEE Communications Magazine 17(4)(July 1979).

    Google Scholar 

  31. S. Haykin, Communication Systems, 2nd Edition, John Wiley & Sons, Inc. (1983).

    Google Scholar 

  32. S. Gronemeyer and A. McBride, “MSK and Offset QPSK Modulation,” IEEE Trans, on Communications COM-24(8)(August 1976).

    Google Scholar 

  33. D. H. Morais and K. Feher, “Bandwidth Efficiency and Probability of Error Performance of MSK and Offset QPSK Systems,” IEEE Trans, on Communications COM-27(12)(December 1979).

    Google Scholar 

  34. S. D. Personick, Optical Fiber Transmission Systems, Plenum Press, New York (1981).

    Google Scholar 

  35. M. K. Barnoski, Fundamentals of Optical Fiber Communications, Academic Press, New York (1976).

    Google Scholar 

  36. R. Gagliardi and S. Karp, Optical Communications, Wiley-Interscience, New York (1976).

    Google Scholar 

  37. P. S. Henry, “Introduction to Lightwave Transmission,” IEEE Communications 23(5)(May 1985).

    Google Scholar 

  38. J. Pierce, “Optical Channels: Practical Limits with Photon Counting,” IEEE Trans, on Communications, (Dec. 1978).

    Google Scholar 

  39. J. Salz, “Modulations and Detection for Coherent Lightwave Communications,” IEEE Communications Magazine 24(6)(June 1986).

    Google Scholar 

  40. T. Kimura, “Coherent Optical Fiber Transmission,” IEEE/OSA Journal of Lightwave Technology LT-5(4)(April 1987).

    Google Scholar 

  41. K. Iwashita and T. Matsumoto, “Modulation and Detection Characteristics of Optical Continuous Phase FSK Transmission System,” IEEE/OSA Journal of Lightwave Technology LT- 5(4)(April 1987).

    Google Scholar 

  42. T. Okoshi, K. Emura, K. Kikuchi, and R. Th. Kersten, “Computation of Bit-Error Rate of Various Heterodyne and Coherent-Type Optical Communication Schemes,” J. Optical Communications 2 pp. 89–96 (1981).

    Article  Google Scholar 

  43. L. G. Kazovsky, “Optical Heterodyning Versus Optical Homodyning: A Comparison,” J. Opt. Commun. 6(1) pp. 18–24 (1985).

    Article  Google Scholar 

  44. L. G. Kazovsky, “Impact of Laser Phase Noise on Optical Heterodyne Communication Systems,” J. Opt. Commun. 7(2) pp. 66–78 (1986).

    Article  Google Scholar 

  45. Y. Yamamoto and T. Kimura, “Coherent Optical Fiber Transmission Systems,” IEEE J. Quantum Electronics QE-17(6) pp. 919–935 (June 1981).

    Article  Google Scholar 

  46. T. Okoshi, “Heterodyne and Coherent Optical Fiber Communications: Recent Progress,” IEEE Trans, on Micr. Th. and Tech. MTT-30 pp. 1138–1148 (August 1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Lee, E.A., Messerschmitt, D.G. (1988). Modulation. In: Digital Communication. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1303-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1303-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-89838-295-2

  • Online ISBN: 978-94-009-1303-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics