Abstract
Multiple access communication, discussed in chapter 16, usually relies on the orthogonality of the different signals by separating them in time or frequency. Analogous techniques apply tofull-duplex transmission, or simultaneous transmission in both directions on a point-to-point link. Specifically, we can use time-compression multiplexing (TCM) and frequency-division multiplexing (FDM). A more efficient approach, echo cancellation enables transmission in two directions simultaneously using the same frequency band, thereby reducing the bandwidth requirements approximately in half relative to TCM and FDM.
Keywords
Data Symbol Phase Splitter Baud Rate Stochastic Difference Equation Stochastic Gradient Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.B. Aschrafi, P. Meschkat, and K. Szechenyi, “Field Trial of a Comparison of Time Separation, Echo Cancellation, and Four-Wire Digital Subscriber Loops,” Proceedings of the Int. Symp. on Subscriber Loops and Services, (Sept. 1982).Google Scholar
- 2.J-O. Andersson, B. Carlquist, A. Bauer, and I. Dahlqvist, “An LSI Implementation of an ISDN Echo Canceler: Design and Network Aspects,” IEEE Journal on Selected Areas in Communications, (this issue).Google Scholar
- 3.D. G. Messerschmitt, “Design Issues for the ISDN U-Interface Transceiver,” IEEE Jour, on Special Areas in Communications, (Nov. 1986).Google Scholar
- 4.O. Agazzi, D. A. Hodges, and D. G. Messerschmitt, “Large-Scale Integration of Hybrid-Method Digital Subscriber Loops,” IEEE Trans, on Communications COM-30 p. 2095 (Sep. 1982).CrossRefGoogle Scholar
- 5.J. Tzeng, D. Hodges, and D. G. Messerschmitt, “Baud Rate Timing Recovery in Digital Subscriber Loops,” IEEE Int. Conf. on Communications, (June. 1985).Google Scholar
- 6.K. H. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Trans, on Communications COM-24 pp. 516–531 (May, 1976).CrossRefGoogle Scholar
- 7.S. B. Weinstein, “A Passband Data-Driven Echo Canceller for Full-Duplex Transmission on Two-Wire Circuits,” IEEE Trans, on Communications, (July 1977).Google Scholar
- 8.J. J. Werner, “An Echo-Cancellation-Based 4800 Bit/s Full-Duplex DDD Modem,” IEEE Journal on Selected Areas in Communications SAC-2(5)(September 1984).Google Scholar
- 9.B. Widrow, J. McCool, M. Larimore, and C. Johnson, Jr., “Stationary and Non-Stationary Learning Characteristics of the LMS Adaptive Filter,” Proc. IEEE 64(8) pp. 1151–1162 (Aug. 1976).MathSciNetCrossRefGoogle Scholar
- 10.N. A. M. Verhoeckx, H. C. Van Den Elzen, F. A. M. Snijders, and P. J. Van Gerwen, “Digital Echo Cancellation for Baseband Data Transmission,” IEEE Trans, on ASSP ASSP 27(6)(December, 1979).Google Scholar
- 11.D. L. Duttweiler, “A Twelve-Channel Digital Echo Canceller,” IEEE Trans, on Communications, pp. 647–653 (May, 1978).Google Scholar
- 12.M. L. Honig and D. G. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications, Kluwer Academic Publishers, Boston (1984).MATHGoogle Scholar
- 13.M. Sondhi and D. A. Berkley, “Silencing Echos on the Telephone Network,” IEEE Proceedings 8(August 1980).Google Scholar
- 14.D. G. Messerschmjtt, “Echo Cancellation in Speech and Data Transmission,” IEEE Jour, on Selected Areas in Communications SAC-2(2) p. 283 (March 1984).CrossRefGoogle Scholar
- 15.D. G. Messerschmitt, “Echo Cancellation in Speech and Data Transmission,” pp. 182 in Advanced Digital Communications Systems and Signal Processing Techniques, ed. K. Feher, Prentice-Hall, Englewood Cliffs, N.J. (1987).Google Scholar
- 16.O. Agazzi, D. G. Messerschmitt, and D. A. Hodges, “Nonlinear Echo Cancellation of Data Signals,” IEEE Trans, on Communications COM-30 p. 2421 (Nov. 1982).CrossRefGoogle Scholar
- 17.D. D. Falconer, “Adaptive Reference Echo Cancellation,” IEEE Trans, on Communications COM-30(9)(Sept. 1982).Google Scholar
- 18.T. L. Lim and M. S. Mueller, “Rapid Equalizer Start-Up Using Least Squares Algorithms,” 1980 Proc. IEEE ICC Google Scholar
- 19.J. Salz, “On the Start-Up Problem in Digital Echo Cancellers,” BSTJ 60(10) pp. 2345–2358 (July-Aug., 1983).Google Scholar
- 20.E. J. Thomas, “Some considerations on the application of the Volterra representation of non-linear networks to adaptive echo cancellers,” BSTJ 50(8) pp. 2797–2805 (Oct. 1971).Google Scholar
- 21.N. Holte and S. Stueflotten, “A New Digital Echo Canceler for Two-Wire Subscriber Lines,” IEEE Trans, on Communications COM-29(ll) pp. 1573–1581 (Nov. 1981).CrossRefGoogle Scholar
Copyright information
© Kluwer Academic Publishers, Boston 1988