Spectrum Control

  • Edward A. Lee
  • David G. Messerschmitt


Coding, which refers to the translation between the user-provided information bits (source bits) and the transmitted data symbols (coded symbols), is discussed in this and the following two chapters. This chapter discusses the use of coding to control the statistics of the data symbols, thereby introducing a measure of control over the spectrum of the transmitted signal. For example, coding can be used to remove undesired correlations among information bits (as in scrambling, section 10.6), or to introduce a controlled correlation between data symbols in the form ofredundancy (the remaining sections). In chapters 11 and 12 we will see the application of redundancy to the correction and prevention of channel errors.


Matched Filter Data Symbol Noise Immunity Viterbi Algorithm Processing Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. A. Franaszek, “Sequence-State Coding for Digital Transmission,” BSTJ 47 p. 143 (Jan. 1968).Google Scholar
  2. N. Q. Due and B. M. Smith, “Line Coding for Digital Data Transmission,”Australian Telecommunications Research (A. T. R) 11(2)(1977).Google Scholar
  3. 3.
    Croisier, “Introduction to Pseudoternary Transmission Codes,” IBM J. Research and Development 14 p. 354 (July 1970).CrossRefGoogle Scholar
  4. 4.
    Brosio, U. DeJulio, V. Lazzari, R. Ravaglia, and A. Tofanelli, “A Comparison of Digital Subscriber Line Transmission Systems Employing Different Line Codes,” IEEE Trans, on Communications COM-29(ll) p. 1581 (Nov. 1981).CrossRefGoogle Scholar
  5. 5.
    L. A. Meacham, “Twinned Binary Transmission,” U.S. Patent 2,759,047, (). Google Scholar
  6. 6.
    M. R. Aaron, “PCM Transmission in the Exchange Plant,” BSTJ 41 pp. 99–141 (Jan., 1962).Google Scholar
  7. 7.
    H. Sailer, H. Schenk, and E. Schmid, “A VLSI Transceiver for the ISDN Customer Access,” Proc. IEEE Int. Conf. Communications, (June 1985).Google Scholar
  8. 8.
    R. F. Lyon, “Two-Level Block Encoding for Digital Transmission,” IEEE Trans, on Communications COM-21(12) p. 1438 (Dec. 1973).CrossRefGoogle Scholar
  9. 9.
    J. N. Franklin and J. R. Pierce, “Spectra and Efficiency of Binary Codes without DC,” IEEE Trans, on Communications COM-20(6) p. 1182 (Dec. 1972).CrossRefGoogle Scholar
  10. 10.
    J. K. Wolf, “Modulation and Coding for the Magnetic Recording Channel,” Proceedings NATO Advanced Study Institute, (July 1986).Google Scholar
  11. 11.
    H. Kobayashi, “A Survey of Coding Schemes for Transmission or Recording of Digital Data,” IEEE Trans, on Communications COM-19 p. 1087 (Dec. 1971).CrossRefGoogle Scholar
  12. 12.
    Lender, “The Duobinary Technique for High-Speed Data Transmission,” IEEE Trans, on Commun. Electronics 7(Mar. 1963).Google Scholar
  13. 13.
    E. Kretzmer, “Generalization of a Technique for Binary Data Communication,” IEEE Trans, on Communication Tech. COM-14(Feb. 1966).Google Scholar
  14. 14.
    H. Harashima and H. Miyakawa, “Matched-Transmission Technique for Channels with Inter symbol Interference,” IEEE Trans, on Communications COM-20 p. 774 (Aug. 1972).CrossRefGoogle Scholar
  15. 15.
    M. Tomlinson, “New Automatic Equalizer Employing Modulo Arithmetic,”Electronic Letters 7(March 1971).Google Scholar
  16. 16.
    D. G. Messerschmitt, “Generalized Partial Response for Equalized Channels with Rational Spectra,” IEEE Trans, on Communications COM-23(ll) p. 1251 (Nov. 1975).CrossRefGoogle Scholar
  17. 17.
    D. G. Messerschmitt, “Design of a Finite Impulse Response for the Viterbi Algorithm and Decision Feedback Equalizer,” Proc. IEEE Int. Conf. on Communications, (June 1974).Google Scholar
  18. 18.
    T. Aulin, N. Rydbeck, and C.-E. W. Sundberg, “Continuous Phase Modulation — Part II: Partial Response Signaling,” IEEE Trans, on Communications COM-29(3)(March 1981).Google Scholar
  19. 19.
    F. D. Waldhauer, “Quantized Feedback in an Experimental 280-Mb/s Digital Repeater for Coaxial Transmission,” IEEE Trans, on Communications COM-22(l) p. 1 (Jan. 1974).CrossRefGoogle Scholar
  20. 20.
    J. E. Savage, “Some Simple Self-Synchronizing Digital Data Scramblers,” BSTJ 46(2) p. 449 (Feb. 1967).zbMATHGoogle Scholar
  21. 21.
    D. G. Leeper, “A Universal Digital Data Scrambler,” BSTJ 52(10) p. 1851 (Dec. 1973).MathSciNetGoogle Scholar
  22. 22.
    R. A. Scholtz, “The Origins of Spread-Spectrum Communications,” IEEE Trans. Communications COM-30(5) p. 822 (May 1982).MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. L. Pickholtz, D. L. Schilling, and L. B. Milstcin, “Theory of Spread-Spectrum Communications — A Tutorial,” IEEE Trans. Communications COM-30(5) p. 855 (May 1982).CrossRefGoogle Scholar
  24. 24.
    S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall, Inc., Englcwood Cliffs, NJ (1987).zbMATHGoogle Scholar
  25. 25.
    P. Kabal and S. Pasupathy, “Partial-Response Signaling,” IEEE Trans, on Communications COM-23(9)(Septcmbcr, 1975).Google Scholar
  26. 26.
    S. Pasupathy, “Correlative Coding: Baseband and Modulation Applications,” pp. 429 in Advanced Digital Communications Systems and Signal Processing Techniques, ed. K. Feher, Prentice-Hall,, Englcwood Cliffs, N.J. (1987).Google Scholar
  27. 27.
    H. Kobayashi, “Correlative Level Coding and Maximum-Likelihood Decoding,” IEEE Trans. Inform. Theory IT-17 pp. 586–594 (Sept. 1971).CrossRefGoogle Scholar
  28. 28.
    G. D. Forney, Jr., “Maximum-Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference,” IEEE Trans, on Information Theory IT-18 pp. 363–378 (May 1972).MathSciNetCrossRefGoogle Scholar
  29. 29.
    T. Aulin and C.-E. W. Sundberg, “Continuous Phase Modulation — Part I: Full Response Signaling,” IEEE Trans, on Communications COM-29(3)(March 1981).Google Scholar
  30. 30.
    M. K. Simon, “A Generalization of Minimum-Shift-Keying (MSK)-Type Signaling Based Upon Input Data Symbol Pulse Shaping,” IEEE Trans, on Communications COM-24(8)(August 1976).Google Scholar
  31. 31.
    J. B. Anderson, C.-E. W. Sundberg, T. Aulin, and N. Rydbeck, “Power-Bandwidth Performance of Smoothed Phase Modulation Codes,” IEEE Trans, on Communications COM-29(3)(March 1981).Google Scholar
  32. 32.
    S. Pasupathy, “Minimum Shift Keying: A Spectrally Efficient Modulation,”IEEE Communications Magazine 17(4)(July 1979).Google Scholar
  33. 33.
    S. Haykin, Communication Systems, 2nd Edition, John Wiley & Sons, Inc. (1983).Google Scholar
  34. 34.
    J. G. Proakis, Digital Communications, McGraw-Hill Book Co., New York (1983).Google Scholar
  35. 35.
    G. R. Cooper and C. D. McGillem, Modern Communications and Spread Spectrum, McGraw-Hill Book Co., New York (1986).Google Scholar
  36. 36.
    E. Cook and H. S. Marsh, “An Introduction to Spread Spectrum,” IEEE Communications Magazine, p.8, (March, 1983). TutorialGoogle Scholar
  37. 37.
    R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic Publishers, Norwell, Mass. (1987).zbMATHCrossRefGoogle Scholar
  38. 38.
    W. Peterson and E. Weldon, Error-Correcting Codes, 2nd Ed,. M.I.T. Press, Cambridge, Mass (1972).zbMATHGoogle Scholar
  39. 39.
    S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco (1967).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1988

Authors and Affiliations

  • Edward A. Lee
    • 1
  • David G. Messerschmitt
    • 1
  1. 1.University of California at BerkeleyUSA

Personalised recommendations