The Receptor for Immunoglobulin E

  • D. H. Conrad
Part of the Immunology and Medicine Series book series (IMME, volume 7)

Abstract

Cellular receptors for IgE are broadly divided into two major categories. The division is based primarily on the relative affinity for ligand, although it is noted that high affinity IgE receptors are found exclusively on mast cells and basophils, while low affinity receptors are found on a much broader range of haematopoietic cell types (see Table 3.1). This general review will focus on some of the relevant findings regarding the structure and functions of both of these receptors. This review is not meant to be exhaustive and the reader is referred to several extensive reviews on both the high1–3 and low4,5 affinity receptors for IgE for additional information. The nomenclature used is based on the recommendations of an ad hoc committee which met at the conference on Fc receptors and immunoglobulin binding factors at Saxton River, Vermon in June, 1987. Thus, high affinity receptors for IgE are designated as FcRIand low ffinity IgE receptors as FcRII.

Keywords

Mast Cell Mediator Release Human Basophil Human Lung Mast Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metzger, H., Alcaraz, G., Hohman, R., Kinet, J.-P., Pribluda, B. and Quarto, R. (1986). The receptor with high affinity for immunoglobulin E. Annu. Rev. Immunol., 4, 419–70Google Scholar
  2. 2.
    Froese, A. (1984). Receptors for IgE on mast cells and basophils. Prog. Allergy, 34, 142–87PubMedGoogle Scholar
  3. 3.
    Ishizaka, T. and Ishizaka, K. (1984). Activation of mast cells for mediator release through IgE receptors. Prog. Allergy, 34, 188–235PubMedGoogle Scholar
  4. 4.
    Spiegelberg, H. L. (1984). Structure and function of Fc receptors for IgE on lymphocytes, monocytes, and macrophages. Adv. Immunol., 35, 61–88PubMedGoogle Scholar
  5. 5.
    Capron, A., Dessaint, J. P., Capron, M., Joseph, M., Ameisen, J. C. and Tonnel, A. B. (1986). From parasites to allergy: a second receptor for IgE. Immunol. Today, 7, 15–18Google Scholar
  6. 6.
    Ishizaka, K., Tomioka, H. and Ishizaka, T. (1970). Mechanisms of passive sensitization. II. Presence of IgE and IgG molecules on human leukocytes. J. Immunol., 105, 1459–67PubMedGoogle Scholar
  7. 7.
    Tomioka, H. and Ishizaka, K. (1971). Mechanisms of passive sensitization. II. Presence of receptors forlgE on monkey mast cells. J. Immunol., 107, 971–8PubMedGoogle Scholar
  8. 8.
    Eccleston, E., Leonard, B. J., Lowe, J. S. and Welford, H. J. (1973). Basophilic leukaemia in the albino rat and a demonstration of the basopoietin. Nature New Biol., 244, 73–6PubMedGoogle Scholar
  9. 9.
    Kulczycki, A. Jr., Isersky, C. and Metzger, H. (1974). The interaction of IgE with rat basophilic leukemia cells. I. evidence for specific binding of IgE. J. Exp. Med., 139, 600–16PubMedGoogle Scholar
  10. 10.
    Conrad, D. H. and Froese, A. (1976). Characterization of the target cell receptor for IgE. II. Polyacrylamide gel analysis of the surface IgE receptor from normal rat mast cells and rat basophilic leukemia cells. J. Immunol., 116, 319PubMedGoogle Scholar
  11. 11.
    Pecoud, A. R., Ruddy, S. and Conrad, D. FL (1981). Functional and partial chemical characterization of the carbohydrate moieties of the IgE receptor on rat basophilic leukemia cells and rat mast cells. J. Immunol., 126, 1624–9PubMedGoogle Scholar
  12. 12.
    Hempstead, B. L., Parker, C. W. and Kulczyki, A. Jr. (1981). The cell surface receptor for immunoglobulin E. Effect of tunicamycin on molecular properties of receptor from rat basophilic leukemia cells. J. Biol. Chem., 256, 10717–23PubMedGoogle Scholar
  13. 13.
    Goetze, A., Kanellopoulos, J., Rice, D. and Metzger, H. (1981). Enzymatic cleavage products of the alpha subunit of the receptor for immunoglobulin E. Biochemistry, 20, 6341–9PubMedGoogle Scholar
  14. 14.
    Rossi, G., Newman, S. A. and Metzger, H. (1977). Assay and partial characterization of the solubilized cell surface receptor for immunoglobulin. J. Biol Chem., 252, 704–11PubMedGoogle Scholar
  15. 15.
    Conrad, D. H., Berczi, I. and Froese, A. (1976). Characterization of the target cell receptor for IgE. I. Solubilization of IgE-receptor complexes from rat mast cells and rat basophilic leukemia cells. Immunochemistry, 13, 329–32PubMedGoogle Scholar
  16. 16.
    Holowka, D., Hartmann, H., Kannellopoulos, J. and Metzger, H. (1980). Association of the receptor for immunoglobulin E with an endogenous polypeptide on rat basophilic leukemia cells. J. Receptor Res., 1, 41–68Google Scholar
  17. 17.
    Perez-Montford, R., Kinet, J.-P. and Metzger, H. (1983). A previously unrecognized subunit of the receptor for immunoglobulin E. Biochemistry, 22, 5722–8Google Scholar
  18. 18.
    Metzger, H., Kinet, J.-P., Perez-Montfort, R., Rivnay, B. and Wank, S. A. (1983). A tetrameric model for the structure of the mast cell receptor with high affinity for IgE. Prog. Immunol., 5, 493–501Google Scholar
  19. 19.
    Pecoud, A. R. and Conrad, D. H. (1981). Characterization of the IgE receptor by tryptic mapping. J. Immunol., 127, 2209–14Google Scholar
  20. 20.
    Holowka, D. and Baird, B. (1984). Lactoperoxidase-catalyzed iodination of the receptor for immunoglobulin E at the cytoplasmic side of the plasma membrane. J. Biol Chem., 259, 3720–8PubMedGoogle Scholar
  21. 21.
    Lee, W. T. and Conrad, D. H. (1985). The murine lymphocyte receptor for IgE. III. Use of chemical cross-linking reagents to further characterize the B lymphocyte Fc epsilon receptor. J. Immunol., 134, 518–25PubMedGoogle Scholar
  22. 22.
    Staros, J. V., Lee, W. T. and Conrad, D. H. (1987). Membrane-impermeant cross-linking reagents: Application to the study of the cell surface receptor for IgE. In Disabato, G., Langone, J. J. and Vunakis, H. V. (eds.) Methods in Enzymology, Vol. 150, pp. 503–12. (NY: Academic Press)Google Scholar
  23. 23.
    Holowka, D., Gitler, C., Bercovici, T. and Metzger, H. (1981). Reaction of 5-iodonaphthyl-1-nitrene with the receptor for IgE on normal and tumor mast cells. Nature, 289, 806–8PubMedGoogle Scholar
  24. 24.
    Kinet, J.-P., Alcaraz, G., Leonard, A., Wank, S. and Metzger, H. (1985). Dissociation of the receptor for immunoglubulin E in mild detergents. Biochemistry, 24, 4117–24PubMedGoogle Scholar
  25. 25.
    Rivnay, B., Wank, S., Poy, G. and Metzger, H. (1982). Phospholipids stabilize the interaction between the alpha and beta subunits of the solubilized receptor for immunoglobulin E. Biochemistry, 21, 6922–7PubMedGoogle Scholar
  26. 26.
    Rivnay, B. and Fischer, G. (1986). Phospholipid distribution in the microenvlronment of the immunoglobulin E-receptor from rat basophilic leukemia cell membrane. Biochemistry, 25, 5686–93PubMedGoogle Scholar
  27. 27.
    Hannun, Y. A., Loomis, C. R., Merrill, A. H., Jr. and Bell, R. M. (1986). Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem., 261, 12604–9PubMedGoogle Scholar
  28. 28.
    Rivnay, B., Rossi, G., Henkart, M. and Metzger, H. (1984). Reconstitution of the receptor for immunoglobulin E into liposomes. Reincorporation of purified receptors. J. Biol. Chem., 259, 1212–17PubMedGoogle Scholar
  29. 29.
    Rivnay, G. and Metzger, H. (1982). Reconstitution of the receptor for immunoglobulin E into liposomes: Conditions for incorporation of the receptor into vesicles. J. Biol. Chem., 257, 12800–8PubMedGoogle Scholar
  30. 30.
    Fewtrell, C., Goetze, A. and Metzger, H. (1982). Phosphorylation of the receptor for immunoglobulin E. Biochemistry, 21, 2004–10PubMedGoogle Scholar
  31. 31.
    Perez-Montford, R., Fewtrell, C. and Metzger, H. (1983). Changes in the receptor for immunoglobulin E coincident with receptor-mediated stimulation of basophilic leukemia cells. Biochemistry, 22, 5733–7Google Scholar
  32. 32.
    Hempstead, B. L., Kulczycki, A. Jr. and Parker, C. W. (1981). Phosphorylation of the IgE receptor from ionophore A23187 stimulated intact rat mast cells. Biochem. Biophys. Res. Commun., 98, 815–22PubMedGoogle Scholar
  33. 33.
    Hempstead, B. L., Parker, C. W. and Kulczycki, A. Jr. (1983). Selective phosphorylation of the IgE receptor in antigen-stimulated rat mast cells. Proc. Natl. Acad. Sci., USA, 80, 3050–3PubMedGoogle Scholar
  34. 34.
    Quarto, R. and Metzger, H. (1986). The receptor for immunoglobulin E: examination for kinase activity and as a substrate for kinases. Mol. Immunol., 23, 1215–23PubMedGoogle Scholar
  35. 35.
    Basciano, L. K., Berenstein, E. H., Kmak, L. and Siraganian, R. P. (1986). Monoclonal antibodies that inhibit IgE binding. J. Biol. Chem., 261, 11823–31PubMedGoogle Scholar
  36. 36.
    Kinet, J.-P., Metzger, H., Hakimi, J. and Kochan, J. (1987). AcDNA presumptively clones coding for the cx-subunit of the receptor with high affinity for immunoglobulin E. Biochemistry, 26, 4605–10PubMedGoogle Scholar
  37. 37.
    Revetch, J. V., Luster, A. D., Weinschank, R., Kochran, J., Pavlovec, A., Portnoy, D. A., Hulmes, J., Pan, Y. C. E. and Unkeless, J. C. (1986). Structural heterogeneity and functional domains of murine immunoglobulin G Fe receptors. Science, 234, 718–25Google Scholar
  38. 38.
    Lewis, V. A., Koch, T., Plutner, H. and Mellman, I. (1986). A complementary DNA clone for a macrophage-lymphocyte Fe receptor. Nature, 324, 372–5PubMedGoogle Scholar
  39. 39.
    Conrad, D., Wingard, J. R. and Ishizaka, T. (1983). The interaction of human and rodent IgE with the human basophil IgE receptor. J. Immunol., 130, 327–33PubMedGoogle Scholar
  40. 40.
    Hempstead, B. L., Parker, C. W. and Kulczycki, A. Jr. (1979). Characterization of the IgE receptor isolated from human basophils. J. Immunol., 123, 2283–91PubMedGoogle Scholar
  41. 41.
    Ishizaka, T., Dvorak, A. M., Conrad, D. H., Niebyl, J. R., Marquette, J. P. and Ishizaka, K. (1985). Morphologic and immunologic characterization of human basophils developed in cultures of cord blood mononuclear cells. J. Immunol., 134, 532–40PubMedGoogle Scholar
  42. 42.
    Ishizaka, T., Conrad, D. H., Schulman, E. S., Sterk, A. R. and Ishizaka, K. (1983). Biochemical analysis of initial triggering events of IgE-mediated histamine release from human lung mast cells. Immunol., 130, 2357–62Google Scholar
  43. 43.
    Sterk, A. R. and Ishizaka, T. (1982). Binding properties of IgE receptors on normal mouse mast cells. J. Immunol., 128, 838–43PubMedGoogle Scholar
  44. 44.
    Kepron, M. R., Conrad, D. H. and Froese, A. (1982). The cross-reactivity of rat IgE and IgG with solubilized receptors of rat basophilic leukemia cells. Mol. Immunol., 19, 1631–9PubMedGoogle Scholar
  45. 45.
    Kepron, M. R. and Froese, A. (1987). A microassay for studies of the interaction between Fc receptors and low affinity ligands. J. Immunol. Meth., 98, 209–17Google Scholar
  46. 46.
    Ishizaka, T. and Ishizaka, K. (1974). Mechanisms of passive sensitization. IV. Dissociation of IgE molecules from basophil receptors at acid pH. J. Immunol., 112, 1078–84PubMedGoogle Scholar
  47. 47.
    Kulczycki, A. Jr. and Metzger, H. (1974). The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction. J. Exp. Med., 140,1676–95PubMedGoogle Scholar
  48. 48.
    Pruzansky, J. J. and Patterson, R. (1986). Binding constants of IgE receptors on human blood basophils for IgE. Immunology, 58, 257–62PubMedGoogle Scholar
  49. 49.
    Conrad, D. H., Bazin, H., Sehon, A. H. and Froese, A. (1975). Binding parameters of the interaction between rat IgE and rat mast cell receptors. J. Immunol., 114, 1688–91PubMedGoogle Scholar
  50. 50.
    Ishizaka, K. and Ishizaka, T. (1969). Immune mechanisms of reversed type reaginic hypersensitivity. J. Immunol., 103, 588–95PubMedGoogle Scholar
  51. 51.
    Ishizaka, T., Ishizaka, K. and Tomioka, H. (1972). Release of histamine and slow reacting substance of anaphylaxis (SRS-A) by IgE-anti-IgE reactions on monkey mast cells. J. Immunol., 108, 513–20PubMedGoogle Scholar
  52. 52.
    Siraganian, R. P., Hook, W. A. and Levine, B. B. (1975). Specific in vitro histamine release from basophils by divalent haptens: Evidence for activation by simple bridging of membrane-bound antibody. Immunochemistry, 12,149–57Google Scholar
  53. 53.
    Segal, D.M., Taurog, J. D. and Metzger, H. (1977). Dimeric immunoglobin E serves as a unit signal for mast cell degranulation. Proc. Natl. Acad. Sci., USA, 74, 2993–7PubMedGoogle Scholar
  54. 54.
    Ishizaka, T. and Ishizaka, K. (1978). Triggering of histamine release from rat mast cells by divalent antibodies against IgE receptors. J. Immunol., 120, 800PubMedGoogle Scholar
  55. 55.
    Isersky, C., Taurog, J. D., Poy, G. and Metzger, H. (1978). Triggering of cultured neoplastic mast cells by antibodies to the receptor for IgE. J. Immunol., 121, 549–58PubMedGoogle Scholar
  56. 56.
    Fewtrell, C. and Metzger, H. (1980). Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells. J. Immunol., 125, 701–10PubMedGoogle Scholar
  57. 57.
    Conrad, D. H., Studer, E., Gervasoni, J. and Mohanakumar, T. (1983). Properties of two monoclonal antibodies directed against the Fc and Fab regions of rat IgE. Int. Arch. Allergy Appl. Immunol., 70, 352–60PubMedGoogle Scholar
  58. 58.
    Menon, A. K., Holowka, D., Webb, W. W. and Baird, B. (1986). Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J. Cell Biol., 102, 541–50PubMedGoogle Scholar
  59. 59.
    Menon, A. K., Holowka, D., Webb, W. W. and Baird, B. (1986). Clustering, mobility, and triggering activity of small oligomers of immunoglobulin E on rat basophilic leukemia cells. J. Cell Biol., 102, 534–40PubMedGoogle Scholar
  60. 60.
    MacGlashan, D. W. and Lichtenstein, L. M. (1985). Characteristics of human basophil sulfidopeptide leukotriene release: Releasability defined as the the ability of the basophil to respond to dimeric cross-links. J. Immunol., 136, 2231–9Google Scholar
  61. 61.
    Lee, W. T. and Conrad, D. H. (1984). The murine lymphocyte receptor for IgE. II. Characterization of the multivalent nature of the B lymphocyte receptor for IgE. J. Exp. Med., 159, 1790–5PubMedGoogle Scholar
  62. 62.
    Schlessinger, J., Webb, W. W., Elson, E. L. and Metzger, H. (1976). Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature, 264, 550–2PubMedGoogle Scholar
  63. 63.
    Ishizaka, T. and Ishizaka, K. (1975). Cell-surface IgE on human basophil granulocytes. Ann. NY Acad. Sci., 254, 462–75PubMedGoogle Scholar
  64. 64.
    Furuichi, K., Rivera, J. and Isersky, C. (1985). The fate of IgE bound to rat basophilic cells. IV. Functional relationship between the receptors for IgE. J. Immunol., 134, 1766–73PubMedGoogle Scholar
  65. 65.
    Menon, A. K., Holowka, D. and Baird, B. (1984). Small oligomers of immunoglobulin E (IgE) cause large-scale clustering of IgE receptors on the surface of rat basophilic leukemia cells. J. Cell Biol., 98, 577–83PubMedGoogle Scholar
  66. 66.
    Chan, B. M. C., McNeill, K., Berczi, I. and Froese, A. (1986). Effects of mycoplasma infection of Fc receptors for IgE of rat basophilic leukemia celts. Eur. J. Immunol., 16, 1319–24PubMedGoogle Scholar
  67. 67.
    Roth, P. A., Rao, M. and Froese, A. (1986). Disulphide-linked receptors for IgE on rat basophilic leukaemia cells. Immunology, 58, 671–6PubMedGoogle Scholar
  68. 68.
    Furuichi, K., Rivera, J. and Isersky, C. (1985). The receptor for immunoglobulin E on rat basophilic leukemia cells: effect of ligand binding on receptor expression. Proc. Natl. Acad. Sci. USA, 82, 1522–5PubMedGoogle Scholar
  69. 69.
    Quarto, R., Kinet, J.-P. and Metzger, H. (1985). Coordinate synthesis and degradation of the alpha-, beta- and gamma-subunits of the receptor for immunoglobulin E. Mol. Immunol., 11, 1045–51Google Scholar
  70. 70.
    Isersky, C., Rivera, J., Segal, D. M. and Triche, T. (1975). The fate of IgE bound to rat basophilic leukemia cells. II. Endocytosis of IgE oligomers and effect on receptor turnover. J. Immunol., 131, 388–96Google Scholar
  71. 71.
    Perez-Montford, R. and Metzger, H. (1982). Proteolysis of soluble IgE-receptor complexes: Localisation of sites on IgE which interact with the Fc receptor. Mol. Immunol., 19, 1113–25Google Scholar
  72. 72.
    Baird, B. and Holowka, D. (1985). Structural mapping of Fc receptor bound immunoglobulin E: proximity to the membrane surface of the antibody combining site and another site in the Fab segments. Biochemistry, 24, 6252–9PubMedGoogle Scholar
  73. 73.
    Holowka, D., Conrad, D. H. and Baird, B. (1985). Structural mapping of membrane-bound immunoglobulin E-receptor complexes: Use of monoclonal anti-IgE antibodies to probe the conformation of receptor-bound IgE. Biochemistry, 25, 6260–7Google Scholar
  74. 74.
    Ishizaka, K., Ishizaka, T. and Lee, E. H. (1970). Biologic function of the Fc fragments of E myeloma protein. Immunochemistry, 7, 687–702PubMedGoogle Scholar
  75. 75.
    Hamburger, R. N. (1975). Peptide inhibition of the Prausnitz-Kustner reaction. Science, 189, 389–90PubMedGoogle Scholar
  76. 76.
    Bennich, H., Ragnarsson, U., Johansson, S. G., Ishizaka, K., Ishizaka, T., Levy, D. A. and Lichtenstein, L. M. (1977). Failure of the putative IgE pentapeptide to compete with IgE for receptors on basophils and mast cells. Int. Arch. Allergy. Appl. Immunol., 53, 459–68PubMedGoogle Scholar
  77. 77.
    Burt, D. S. and Stanworth, D. R. (1987). Inhibition of binding of rat IgE to rat mast cells by synthetic IgE peptides. Eur. J. Immunol., 17, 437–40PubMedGoogle Scholar
  78. 78.
    Kenten, J., Helm, B., Ishizaka, T., Cantini, P. and Gould, H. (1984). Properties of a human immunoglobulin E-chain fragment synthesized in Escherichia coli. Proc. Natl. Acad. Sci. USA, 81, 2955–9PubMedGoogle Scholar
  79. 79.
    Liu, F.-T., Albrandt, K. A., Bry, C. G. and Ishizaka, T. (1984). Expression of a biologically active fragment of human IgE epsilon chain in Escherichia coli. Proc. Natl. Acad. Sci. USA, 81, 5369–73PubMedGoogle Scholar
  80. 80.
    Ishizaka, T., Helm, B., Hakimi, J., Niebyl, J., Ishizaka, K. and Gould, H. (1986). Biological properties of a recombinant human immunoglobulin epsilon-chain fragment. Proc. Natl. Acad. Sci. USA, 83, 8323–7PubMedGoogle Scholar
  81. 81.
    Helm, B., Marsh, P., Vercelli, D., Padlan, E., Gould, H. and Geha, R. (1988). The mast cell binding site on human immunoglobulin E. Nature, 331, 180–3PubMedGoogle Scholar
  82. 82.
    Mongar, J. L. and Schild, H. O. (1958). The effect of calcium and pH on the anaphylactic reaction. J. Physiol., 140, 272–84PubMedGoogle Scholar
  83. 83.
    White, J. R., Ishizaka, T., Ishizaka, K. and Sha’afi, R. I. (1984). Direct demonstration of increased cellular concentration of free calcium as measured by quin-2 in stimulated rat peritoneal mast cells. Proc. Natl. Acad. Sci. USA, 81, 3978–82PubMedGoogle Scholar
  84. 84.
    Lindau, M. and Fernandez, J. M. (1986). IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature, 319, 150–3PubMedGoogle Scholar
  85. 85.
    Beaven, M. A., Rogers, J., Moore, J. P., Hesketh, T. R., Smith, G. A. and Metcalfe, J. C. (1984). The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J. Biol. Chem., 259, 7129–36PubMedGoogle Scholar
  86. 86.
    Berridge, M. J. and Irvine, R. F. (1984). Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–21PubMedGoogle Scholar
  87. 87.
    Berridge, M. J. (1984). Inositol triphosphate and diacylglyceroi as second messengers. Biochem. J., 220, 345–60PubMedGoogle Scholar
  88. 88.
    Cunha-Melo, J. R., Dean, N. M., Moyer, J. D., Maeyama, K. and Beaven, M. A. (1987). The kinetics of phosphoinositide hydrolysis in rat basophilic leukemia (RBL-2H3) cells varies with the type of IgE receptor crosslinking agent used. J. Biol. Chem., 262, 11455–63PubMedGoogle Scholar
  89. 89.
    Cunha-Melo, J. R., Dean, N. M. and Beaven, M. A. (1987). Formation of inositol 1,4,5–triphosphate and inositol 1,3,4–triphosphate from inositol 1,3,4,5–tetrakisphosphate and their pathways of degradation in RBL-2H3 cells. (Submitted)Google Scholar
  90. 90.
    Maeyama, K., Hohman, R. J., Metzger, H. and Beaven, M. (1986). Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. J. Biol. Chem., 261, 2583–92PubMedGoogle Scholar
  91. 91.
    White, J. R., Pluznik, D. H., Ishizaka, K. and Ishizaka, T. (1985). Antigen-induced increase in protein kinase C activity in plasma membrane of mast cells. Proc. Natl. Acad. Sci. USA, 82, 8193–7PubMedGoogle Scholar
  92. 92.
    Musch, M. W. and Siegel, M. I. (1986). Antigen-stimulated metabolism of inositol phospholipids in the cloned murine mast-cell line MC9. Biochem. J., 234, 205–12PubMedGoogle Scholar
  93. 93.
    Beaven, M. A., Moore, J. P., Smith, G. A., Hesketh, T. R. and Metcalfe, J. C. (1984). The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J. Biol. Chem., 259, 7137–42PubMedGoogle Scholar
  94. 94.
    Ali, H., Cunha-Melo, J. R. and Beaven, M. A. (1987). Receptor-mediated release of inositol 1,4,5–trisphosphate in basophilic RBL-2H3 cells permealized with streptolysin O: Evidence for simultaneous production of inositol 1,4–bisphosphate and inositol 1,4,5–trisphosphate. (Submitted)Google Scholar
  95. 95.
    Katada, T. and Ui, M. (1982). Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA, 79, 3129–33PubMedGoogle Scholar
  96. 96.
    Nakamura, T. and Ui, M. (1984). Islet activating protein, pertussis toxin, inhibits Ca+2–induced and guanine nucleotide-dependent releases of histamine and arachidonic acid from rat mast cells. FEBS Lett., 173, 414–18PubMedGoogle Scholar
  97. 97.
    Saito, H., Okajima, F., Molski, T. F. P., Sha’afi, R. I., Ui, M. and Ishizaka, T. (1987). Effects of ADP-ribosylation of GTP-binding protein by pertussis toxin on immunoglobulin E-dependent and -independent histamine release from mast cells and basophils. J. Immunol., 138, 3927–34PubMedGoogle Scholar
  98. 98.
    Mazurek, N., Schindler, H., Schurholz, T. L. and Pecht, I. (1984). The cromolyn binding protein constitutes the Ca++ channel of basophils opening upon immunological stimulus. Proc. Natl. Acad. Sci. USA, 81, 6841–5PubMedGoogle Scholar
  99. 99.
    Mazurek, N., Bashkin, P., Pertrauk, A. and Pecht, I. (1983). Basophil variants with impaired cromoglycate binding do not respond to an immunological degranulation stimulus. Nature, 303, 528–30PubMedGoogle Scholar
  100. 100.
    Mazurek, N., Bashkin, P., Loyter, A. and Pecht, I. (1983). Restoration of Ca++ influx and degranulation capacity of variant RBL-2H3 cells upon implantation of isolated cromolyn binding protein. Proc. Natl. Acad. Sci. USA, 80, 6014–18PubMedGoogle Scholar
  101. 101.
    Mazurek, N., Dulic, V., Pecht, I., Schindler, H. G. and Rivnay, B. (1986). The role of the Fcε receptor in calcium channel opening in rat basophilic leukemia cells. Immunol. Lett., 12, 31–5PubMedGoogle Scholar
  102. 102.
    Pecht, I., Schweitzer-Stenner, R., Rivnay, B. and Corcia, A. (1986). Characterization of the ion channel activity in planar bilayers containing IgE- Fcε receptor and the cromolyn-binding protein. EMBO J., 5, 849–54PubMedGoogle Scholar
  103. 103.
    Mazurek, N., Bashkin, P. and Pecht, I. (1982). Isolation of a basophilic membrane protein binding the anti-allergic drug cromolyn. EMBO J., 1, 585–90PubMedGoogle Scholar
  104. 104.
    MacGlashan, D. W., Jr. and Lichtenstein, L. M. (1981). The transition from specific to non-specific desensitation in human basophils. J. Immunol., 127, 2410–14PubMedGoogle Scholar
  105. 105.
    MacGlashan, D. W. Jr., Mogowski, M. and Lichtenstein, L. M. (1983). Studies of antigen binding on human basophils. II. Continued expression of antigen-specific IgE during antigen-induced desensitization. J. Immunol., 130, 2337–42PubMedGoogle Scholar
  106. 106.
    Furuichi, K., Rivera, J. and Isersky, C. (1984). The fate of IgE bound to rat basophilic cells. III. Relationship between antigen induced endocytosis and serotonin release. J. Immunol., 133, 1513–20PubMedGoogle Scholar
  107. 107.
    Ishizaka, T., Sterk, A. R., Daeron, M., Becker, E. and Ishizaka, K. (1985). Biochemical analysis of desensitization of mouse mast cells. J. Immunol., 135, 491–501Google Scholar
  108. 108.
    Kazimierczak, W., Meier, H. L., MacGlashan, D. W. Jr. and Lichtenstein, L. M. (1984). An antigen-activated, DFP-inhibitable enzyme controls basophil desensitization. J. Immunol., 132, 399–405PubMedGoogle Scholar
  109. 109.
    Austen, K. F. and Brocklehurst, W. E. (1960). Anaphylaxis in chopped guinea pig lung. Effect of peptidase substrates and inhibitors. J. Exp. Med., 113, 521–39Google Scholar
  110. 110.
    MacGlashan, D., Jr. and Lichtenstein, L. M. (1987). Basic characteristics of human lung mast cell desensitization. J. Immunol., 139, 501–5PubMedGoogle Scholar
  111. 111.
    Lawrence, D. A., Weigle, W. O. and Spiegelberg, H. L. (1975). Immunoglobulins cytophilic for human lymphocytes, monocytes, and neutrophils. J. Clin. Invest., 55, 268Google Scholar
  112. 112.
    Gonzalez-Molina, A. and Spiegelberg, H. L. (1976). Binding of IgE myeloma proteins to human cultured lymphoblastoid cells. J. Immunol., 117, 1838PubMedGoogle Scholar
  113. 113.
    Delespesse, G., Sarfati, M., Rubio-Truijillo, M. and Wolowiec, T. (1986). IgE receptors on human lymphocytes. III. Expression of IgE receptors on mitogen-stimulated human mononuclear cells. Eur. J. Immunol., 16, 1043–7PubMedGoogle Scholar
  114. 114.
    Nutman, T. B., Volkman, D. S., Hussain, R., Fauci, A. S. and Ottesen, E. A. (1985). Filarial parasite-specific T cell lines: Induction of IgE synthesis. J. Immunol., 134, 1178PubMedGoogle Scholar
  115. 115.
    Young, M. C., Leung, D. Y. and Geha, R. S. (1984). Production of IgE-potentiating factor in man by T cell lines bearing Fc receptors for IgE. Eur. J. Immunol., 14, 871–8PubMedGoogle Scholar
  116. 116.
    Capron, A., Dessaint, J.-P., Joseph, M., Rousseaux, R., Capron, M. and Bazin, H. (1977). Interaction between IgE complexes and macrophages in the rat: a new mechanism of macrophage activation. Eur. J. Immunol., 7, 315–30PubMedGoogle Scholar
  117. 117.
    Capron, M., Kusnierz, J. P., Prin, L., Spiegelberg» H. L., Ovlaque, G., Gosset, P., Tonnel, A. B. and Capron, A. (1985). Cytophilic IgE on human blood and tissue eosinophils: detection by flow microfluorometry. J. Immunol., 134, 3013–18PubMedGoogle Scholar
  118. 118.
    Joseph, SVL, Capron, A., Ameisen, J. C., Capron, M., Vorng, H., Pancre, V., Kusnierz, J. P. and Auriault, C. (1986). The receptor for IgE on blood platelets. Eur. J. Immunol., 16, 306–12PubMedGoogle Scholar
  119. 119.
    Capron, A. and Dessaint, J. P. (1985). Effector and regulatory mechanisms in immunity to schistosomes: A heuristic view. Annu. Rev. Immunol., 3, 455–76PubMedGoogle Scholar
  120. 120.
    Joseph, M., Auriault, C., Capron, A., Vorng, H. and Viens, P. (1983). A new function for platelets: IgE-dependent killing of schistosomes. Nature, 303, 810–12PubMedGoogle Scholar
  121. 121.
    Capron, M., Spiegelberg, H. L., Prin, L., Bennich, H., Butterworth, A. E., Pierce, R. J., Ouaissi, M. A. and Capron, A. (1984). Role of IgE receptors in effector function of human eosinophils. J. Immunol., 132, 462–8PubMedGoogle Scholar
  122. 122.
    Kikutani, H., Inui, S., Sato, R., Barsumian, E. L., Owaki, H., Yamasaki, K., Kaisho, T., Uchibayashi, N., Hardy, R. R., Hirano, T., Tsumasawa, S., Sakiyama, F., Suemura, M. and Kishimoto, T. (1986). Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell, 47, 657–65PubMedGoogle Scholar
  123. 123.
    Meinke, G. C., Magro, A. M., Lawrence, D. A. and Spiegelberg, H. L. (1978). Characterization of an IgE receptor isolated from cultured B type lymphoblastoid cells. J. Immunol., 121, 1321–6PubMedGoogle Scholar
  124. 124.
    Melewicz, F. M., Plummer, J. M. and Spiegelberg, H. L. (1982). Comparison of the Fc receptors for IgE on human lymphocytes and monocytes. J. Immunol., 129, 563–9PubMedGoogle Scholar
  125. 125.
    Peterson, L. H. and Conrad, D. H. (1985). Fine specificity, structure, and proteolytic susceptibility of the human lymphocyte receptor for IgE. J. Immunol., 135, 2654–60PubMedGoogle Scholar
  126. 126.
    Sarfati, M., Nakajima, T., Frost, H., Kilccherr, E. and Delespesse, G. (1987). Purification and partial biochemical characterization of IgE-binding factors secreted by a human B lymphoblastoid cell line. Immunology, 60, 539–45PubMedGoogle Scholar
  127. 127.
    Sarfati, M., Nutman, T., Fonteyn, C. and Delespesse, G. (1986). Presence of antigenic determinants common to IgE Fc receptors on human macrophages, T and B lymphocytes and IgE-binding factors. Immunology, 59, 569–75PubMedGoogle Scholar
  128. 128.
    Rector, E., Nakajima, T., Rocha, C., Duncan, D., Lestourgeon, D., Mitchell, R. S., Fischer, J., Sehon, A. H. and Delespesse, G. (1985). Detection and characterization of monoclonal antibodies specific to IgE receptors on human lymphocytes by flow cytometry. Immunology, 55, 481–8PubMedGoogle Scholar
  129. 129.
    Suemura, M., Kikutani, H., Barsumian, E. L., Hattori, Y., Kishimoto, S., Sato, R., Maeda, A., Nakamura, H., Owaki, H., Hardy, R. R. and Kishimoto, T. (1986). Monoclonal anti-Fcε receptor antibodies with different specificities and studies on the expression of Fce receptors on human B and T cells. J. Immunol., 137, 1214–20PubMedGoogle Scholar
  130. 130.
    Noro, N., Yoshioka, A., Adache, M., Yasuker, K., Masuda, T. and Yodoi, J. (1986). Monoclonal antibody (H107) inhibiting IgE binding to FcεR(+) human lymphocytes. J. Immunol., 137, 1258–63PubMedGoogle Scholar
  131. 131.
    Ikuta, K., Takami, M., Kim, L. W., Honjo, T., Miyoshi, T., Tagaya, Y., Kawabe, T. and Yodoi, J. (1987). Human lymphocyte Fc receptor for IgE: Sequence homology of its cloned cDNA with animal lectins. Proc. Natl Acad. Sci., 84, 819–23PubMedGoogle Scholar
  132. 132.
    Ludin, C., Hofstetter, H., Sarfati, M., Levy, C. A., Suter, U., Alaimo, D., Kelchherr, E., Frost, H. and Delespesse, G. (1987). Cloning and expression of the cDNA coding for a human lymphocyte IgE receptor. EMBO J., 6, 109–14PubMedGoogle Scholar
  133. 133.
    Martens, L. L., Huff, T., Jardieu, P., Trounstine, M. L., Coffman, R. L., Ishizaka, K. and Moore, K. W. (1985). cDNA clones encoding IgE-binding factors from a rat-mouse T cell hybridoma. Proc. Natl. Acad. Sci. USA, 82, 2460–4PubMedGoogle Scholar
  134. 134.
    Vander-Mallie, R., Ishizaka, T. and Ishizaka, K. (1982). Lymphocytes bearing receptors for IgE. VIII. Affinity of mouse IgE for Fc-epsilon receptor on mouse B lymphocytes. J. Immunol., 128, 2306PubMedGoogle Scholar
  135. 135.
    Conrad, D. H. and Peterson, L. H. (1984). The murine lymphocyte receptor for IgE. I. Isolation and characterization of the murine B cell Fcε receptor and comparison with Fcε receptors from rat and human. J. Immunol., 132, 796–803PubMedGoogle Scholar
  136. 136.
    Lee, W. T. and Conrad, D. H. (1986). Murine B cell hybridomas bearing ligand-inducible Fc receptors for IgE. J. Immunol., 136, 4573–80PubMedGoogle Scholar
  137. 137.
    Kim, K. J., Kannellopoulos-Langevin, C., Merwin, R. M., Sachs, D. H. and Asofsky, R. (1979). Establishment and characterization of Balb/c lymphoma lines with B cell properties. J. Immunol., 122, 549–54PubMedGoogle Scholar
  138. 138.
    Rao, M., Lee, W. T. and Conrad, D. H. (1987). Characterization of a monoclonal antibody directed against the murine B lymphocyte receptor for IgE. J. Immunol., 138, 1845–51PubMedGoogle Scholar
  139. 139.
    Keegan, A. D. and Conrad, D. H. (1987). The murine lymphocyte receptor for IgE V. Biosynthesis, transport, and maturation of the B cell Fcf receptor. J. Immunol., 139, 1199–205PubMedGoogle Scholar
  140. 140.
    Lee, W. T., Rao, M. and Conrad, D. H. (1987). The murine lymphocyte receptor for IgE IV. The mechanism of ligand-specific receptor upregulation on B Cells. J. Immunol., 139, 1191–8PubMedGoogle Scholar
  141. 141.
    Jarrett, E. E. and Stewart, D. C. (1972). Potentiation of rat reaginic (IgE) antibody by helminth infection. Simultaneous potentiation of separate reagins. Immunology, 23, 749–55PubMedGoogle Scholar
  142. 142.
    Yodoi, J. and Ishizaka, K. (1979). Lymphocytes bearing Fc receptors for IgE. I. Presence of human and rat T lymphocytes with Fcε receptors. J. Immunol., 122, 2577–83PubMedGoogle Scholar
  143. 143.
    Bazin, H. and Beckers, A. (1976). IgE myelomas in rats. In Johansson, S. G. O., Strandberg, K. and Uvnas, B. (eds.) Molecular and Biological Aspects of the Acute Allergic Reaction, pp. 125–52. (NY: Plenum Press)Google Scholar
  144. 144.
    Yodoi, J., Ishizaka, T. and Ishizaka, K. (1979). Lymphocytes bearing Fc receptors for IgE. II. Induction of Fcε-receptor bearing rat lymphocytes by IgE. J. Immunol., 123, 455–62PubMedGoogle Scholar
  145. 145.
    Chen, S. S., Bohn, J. A., Liu, F.-T. and Katz, D. H. (1981). Murine lymphocytes expressing Fc receptors for IgE (Fcε). I. Conditions for inducing FceR+ lymphocytes and inhibition of the inductive events by suppressive factor of allergy (SFA). J. Immunol., 127, 166–73PubMedGoogle Scholar
  146. 146.
    Ishizaka, K. and Sandberg, K. (1981). Formation of IgE binding factors by human T lymphocytes. J. Immunol., 126, 1692–6PubMedGoogle Scholar
  147. 147.
    Yodoi, J. and Ishizaka, K. (1980). Induction of Fcε-receptor bearing cells in vitro in human peripheral lymphocytes. J. Immunol., 124, 934–8PubMedGoogle Scholar
  148. 148.
    Ishizaka, K. (1984). Regulation of IgE synthesis. Annu. Rev. Immunol., 2, 159–82PubMedGoogle Scholar
  149. 149.
    Katz, D. and Marcelletti, J. F. (1984). Regulation of the IgE antibody system in human and experimental animals. In Yamamura, Y. and Tada, T. (eds.) Progress in Immunology, Volume V. page 465. (NY: Academic Press)Google Scholar
  150. 150.
    Kikutani, H., Suemura, M., Owaki, H., Nakamura, H., Sato, R., Yamasaki, K., Barsumian, E. L., Hardy, R. R. and Kishimoto, T. (1986). Fce receptor, a specific differentiation marker transiently expressed on mature B cells prior to isotype switching. J. Exp. Med., 164, 1455–69PubMedGoogle Scholar
  151. 151.
    DeFrance, T., Aubry, J. P., Rousset, F., Vanbervliet, B., Bonnefoy, J. Y., Arai, N., Takebe, Y., Yokota, T., Lee, F., Arai, K., DeVries, J. and Banchereau, J. (1987). Human recombinant interleukin 4 induces Fce receptors (CD23) on normal human B lymphocytes. J. Exp. Med., 165, 1459–67PubMedGoogle Scholar
  152. 152.
    Hudak, S. A., Gollmick, S. O., Conrad, D. H. and Kehry, M. R. (1987). Murine B cell stimulatory factor 1 (interleukin 4) increases expression of the Fc receptor for IgE on mouse B cells. Proc. Natl. Acad. Sci. USA, 84, 4606–10PubMedGoogle Scholar
  153. 153.
    Ohara, J. and Paul, W. E. (1985). Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature, 315, 333–6PubMedGoogle Scholar
  154. 154.
    Mond, J. J., Carmen, J., Sarma, C., Ohara, J. and Finkelman, F. D. (1986). Interferon-gamraa suppresses B cell stimulation factor (BSF-1) induction of Class II MHC determinants on B cells. J. Immunol., 137, 3534–7PubMedGoogle Scholar
  155. 155.
    Rabin, E. M., Mond, J. J., Ohara, J. and Paul, W. E. (1986). Interferon-gamma inhibits the action of B cell stimulatory factor (BSF)-l on resting B cells. J. Immunol., 137, 1573–6PubMedGoogle Scholar
  156. 156.
    Coffman, R. L. and Carty, J. (1986). A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma. J. Immunol., 136, 949–54PubMedGoogle Scholar
  157. 157.
    Conrad, D. H., Waldschmidt, T. J., Lee, W. T., Rao, M., Keegan, A. D., Noelle, R. J., Lynch, R. G. and Kehry, M. R. (1987). Effect of B cell stimulatory factor-1 (Interleukin 4) on Fcε and Fcε receptor expression on murine B lymphocytes and B cell lines. J. Immunol., 139, 2290–6PubMedGoogle Scholar
  158. 158.
    Finkelman, F. D., Katona, I. M., Urban, J. F., Jr., Snapper, C. M., Ohara, J. and Paul, W. E. (1986). Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine B-cell stimulatory factor 1. Proc. Natl. Acad. Sci. USA, 83, 9675–8PubMedGoogle Scholar
  159. 159.
    Arai, K., Yokota, T., Takebe, Y., Arai, M., Otsuka, T., Miyajima, A., Kastelein, R., Coffman, R., Banchereau, J., DeVries, J. and Lee, F. (1987). Isolation and characterization of Il-4 and IgA inducing factor genes and their products. Fed. Proc., 46, 1498 (Abstr. 6895)Google Scholar
  160. 160.
    Huff, T. F., Yodoi, J., Uede, T. and Ishizaka, K. (1984). Presence of an antigenic determinant common to rat IgE-potentiating factor and, IgE-suppressive factor and Fc epsilon receptors on T and B lymphocytes. J. Immunol., 122, 406–12Google Scholar
  161. 161.
    Kisaki, T., Huff, T. F., Conrad, D. H., Yodoi, J. and Ishizaka, K. (1987). Monoclonal antibody specific for T cell-derived human IgE binding factors. J. Immunol., 138, 3345–51PubMedGoogle Scholar
  162. 162.
    Moore, K. W., Jardieu, P., Mietz, J. A., Trounstine, M. L., Kuff, E. L., Ishizaka, K. and Martens, D. L. (1986). Rodent IgE-binding factor genes are members of an endogenous, retrovirus-like gene family. J. Immunol., 136, 4283–90PubMedGoogle Scholar
  163. 163.
    Kuff, E. L., Mietz, J. A., Troustine, M. L., Moore, K. W. and Martens, C. L. (1986). cDNA clones encoding murine IgE-binding factors represent multiple structural variants of intracisternal A-particle genes. Proc. Natl. Acad. Sci. USA, 83, 6583–7PubMedGoogle Scholar
  164. 164.
    Katona, I. M., Urban, J. F., Jr., Titus, J. A., Stephany, D. A., Segal, D. M. and Finkelman, F. D. (1984). Characterization of murine lymphocyte IgE receptors by flow microfluorometry. J. Immunol., 133, 1521–8PubMedGoogle Scholar
  165. 165.
    Yukawa, K., Kikutani, H., Owaki, H., Yamasaki, K., Yokota, A., Nakamura, H., Barsumian, E. L., Hardy, R. R., Suemura, M. and Kishimoto, T. (1987). A B cell-specific differentiation antigen CD23, is a receptor for IgE (FcεR) on lymphocytes. J. Immunol., 138, 2576–80PubMedGoogle Scholar
  166. 166.
    Bonnefoy, J.-Y., Aubry, J.-P., Peronne, C., Wijdenes, J. and Banchereau, J. (1987). Production and chararacterization of a monoclonal antibody specific for the human lymphocyte low affinity receptor for IgE: CD23 is a low affinity receptor for IgE. J. Immunol., 138, 2970–8PubMedGoogle Scholar
  167. 167.
    Thorley-Lawson, D. A., Nadler, L. M., Bhan, A. K. and Schooley, R. T. (1985). BLAST-2 [EBVCS], an early cell surface marker of human B cell activation, is superinduced by Epstein Barr virus. J. Immunol., 134, 3007–12PubMedGoogle Scholar
  168. 168.
    Gordon, J., Rowe, M., Walker, L. and Guy, G. (1986). Ligation of the CD23, p45 (BLAST-2, EBVCS) antigen triggers the cell-cycle progression of activated B lymphocytes. Eur. J. Immunol., 16, 1075–80PubMedGoogle Scholar
  169. 169.
    Gordon, J., Webb, A. J., Guy, G. R. and Walker, L. (1987). Triggering of B lymphocytes through CD23: epitope mapping and studies using antibody derivatives indicate an allosteric mechanism of signaling. Immunology, 60, 517–21PubMedGoogle Scholar
  170. 170.
    Guy, G. R. and Gordon, J. (1987). Coordinated action of IgE and a B-cell stimulatory factor on the CD23 receptor molecule upregulates B-lymphocyte growth. Proc. Natl. Acad. Sci. USA, 84, 6239–43PubMedGoogle Scholar
  171. 171.
    Sharma, S., Mehta, S., Morgan, J. and Maizel, A. (1987). Molecular cloning and expression of a human B-cell growth factor gene in Escherichia coli. Science, 235, 1489–92PubMedGoogle Scholar
  172. 172.
    Gordon, J., Ley, S. C., Melamed, M. D., English, L. S. and Hughes, Jones, N. C. (1984). Immortalized B lymphocytes produce B-cell growth factor. Nature, 310, 145–7PubMedGoogle Scholar
  173. 173.
    Gordon, J., Guy, G. and Walker, L. (1985). Autocrine models of B-lymphocyte growth. I. Role of cell contact and soluble factors in T-independent B-cell responses. Immunology, 56, 329–35PubMedGoogle Scholar
  174. 174.
    Swendeman, S. and Thorley-Lawson, D. A. (1987). The activation antigen BLAST-2, when shed, is an autocrine BCGF for normal and transformed B cells. EMBO J., 6, 1637–42PubMedGoogle Scholar
  175. 175.
    Wang, F., Gregory, C. D., Rowe, M., Rickinson, A. B., Wang, D., Birkenbach, M., Kikutani, H., Kishimoto, T. and Kieff, E. (1987). Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc. Natl. Acad. Sci. USA, 84, 3452–6PubMedGoogle Scholar
  176. 176.
    Huff, T. F. and Ishizaka, K. (1984). Formation of IgE-binding factors by human T-cell hybridomas. Proc. Natl. Acad. Sci. USA, 81, 1514–18PubMedGoogle Scholar
  177. 177.
    Huff, T. F., Jardieu, P. and Ishizaka, K. (1986). Regulatory effects of human IgE-binding factors on the IgE response of rat lymphocytes. J. Immunol., 136, 955–62PubMedGoogle Scholar
  178. 178.
    Young, M., Geha, R. S., Maksad, K. N. and Leung, D. Y. M. (1986). Characterization of human T cell-derived IgE-potentiating factor. Eur. J. Immunol., 16, 985–91PubMedGoogle Scholar
  179. 179.
    Leung, D. Y. M. and Geha, R. S. (1986). Control of IgE synthesis in man. J. Clin. Immunol., 6, 273–83PubMedGoogle Scholar
  180. 180.
    Sarfati, M., Rector, E., Wong, K., Rubio-Trujillo, M., Sehon, A. H. and Delespesse, G. (1984). In vitro synthesis of IgE by human lymphocytes. II. Enhancement of the spontaneous IgE synthesis by IgE-binding factors secreted by RPMI 8866 lymphoblastoid B cells. Immunology, 53, 197–205PubMedGoogle Scholar
  181. 181.
    Sarfati, M., Rector, E., Sehon, A. H. and Delespesse, G. (1984). In vitro synthesis of IgE by human lymphocytes. IV. Suppression of the spontaneous IgE synthesis by IgE-binding factors secreted by tunicamycin-treated RPMI 8866 cells. Immunology, 53, 783–90PubMedGoogle Scholar
  182. 182.
    Saryan, J. A., Leung, D. Y. and Geha, R. S. (1983). Induction of human IgE synthesis by a factor derived from T cells of patients with hyper-IgE states. J. Immunol., 130, 242–7PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • D. H. Conrad

There are no affiliations available

Personalised recommendations