Skip to main content

Antimicrobial Functions of Neutrophils

  • Chapter
Phagocytes and Disease

Part of the book series: Immunology And Medicine Series ((IMME,volume 11))

Abstract

Once bacteria invade the tissues, the outcome of the host-parasite relationship is determined by the interaction of bacterial virulence factors on the one hand and the bacteriolytic activity of serum and the phagocytic capacity of polymorphonuclear (PMN) and mononuclear leukocytes (MN) on the other1-10. Exposure of some bacteria (especially Gram-negative bacteria such as Neisseria spp. and some of the Enterobacteriaceae) to normal human serum results in a loss of viability and sometimes in their dissolution11. This may play an important role in protecting the host against infections by endogenous and exogenous bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bladen, H.A., Evans, R. T. and Mergenhagen, S. E. (1966). Lesions in Escherichia coli membranes after action of antibody and complement. J. Bacteriol., 91, 2377–81

    PubMed  CAS  Google Scholar 

  2. Densen, P. and Mandell, G. L. (1980). Phagocyte strategy vs. microbial tactics. Rev. Infect. Dis., 2, 817–38

    PubMed  CAS  Google Scholar 

  3. Goldman, J.N., Rudy, S., Austen, K.F. and Feingold, D.S. (1969). The serum bactericidal reaction. III. Antibody and complement requirements for killing a rough Escherichia coli. J. Immunol., 102, 1379–87

    CAS  Google Scholar 

  4. Horovitz, M. A. (1982). Phagocytosis of microorganisms. Rev. Infect. Dis., 4, 104–23

    Google Scholar 

  5. Klebanoff, S.J. (1975). Antimicrobial mechanism in neutrophilic polymorphonuclear leukocytes. Semin. Hematol., 12, 117–42

    PubMed  CAS  Google Scholar 

  6. Morrison, D. C. and Kline, L. F. (1977). Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J. Immunol., 118, 362–8

    PubMed  CAS  Google Scholar 

  7. Oiling, S. (1977). Sensitivity of Gram-negative bacilli to the serum bactericidal activity: a marker of the host-parasite relationship in acute and persisting infections. Scand. J. Infect. Dis. (Suppl.), 10, 1–40

    Google Scholar 

  8. Stossel, T. P. (1974). Phagocytosis (first of three parts). N. Engl. J. Med., 290, 717–23

    PubMed  CAS  Google Scholar 

  9. Stossel, T. P. (1974). Phagocytosis (second of three parts). N. Engl. J. Med., 290, 774–80

    Google Scholar 

  10. Stossel, T. P. (1974). Phagocytosis (third of three parts). N. Engl. J. Med., 290, 833–9

    PubMed  CAS  Google Scholar 

  11. Taylor, P. W. (1983). Bactericidal and bacteriolytic activity of serum against Gram- negative bacteria. Microbiol. Rev., 47, 46–83

    PubMed  CAS  Google Scholar 

  12. Silverstein, S.C., Steinman, R.M. and Cohn, Z.A. (1977). Endocytosis. Ann. Rev. Biochem., 46, 669–722

    PubMed  CAS  Google Scholar 

  13. Avila, J. L. and Convit, J. (1976). Physicochemical characteristic of glucosaminoglycan- lysosomal enzyme interaction in vitro. A model of control of leukocytic lysosomal activity. Biochem. J., 160, 129–36

    PubMed  CAS  Google Scholar 

  14. Bainton, D. F., Ullyot, J. L. and Farguhar, M. G. (1971). The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and Specific granules. J. Exp. Med., 134, 907–34

    PubMed  CAS  Google Scholar 

  15. Bainton, D. F. (1973). Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J. Cell. Biol., 58, 249–65

    PubMed  CAS  Google Scholar 

  16. Bretz, U. and Baggiolini, M. (1974). Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes. J. Cell Biol., 63, 251–69

    PubMed  CAS  Google Scholar 

  17. Odeberg, H. and Olsson, I. (1975). Antibacterial activity of cationic proteins from human granulocytes. J. Clin. Invest., 56, 1118–24

    PubMed  CAS  Google Scholar 

  18. Spitznagel, J.K., Dalldorf, F.G., Leffell, M.S., Folds, J.D., Welsh, J.R.H., Cooney, M.H. and Martin, L. E. (1974). Character of azurophil and specific granules purified from human polymorphonuclear leukocytes. Lab. Invest., 30, 774–85

    PubMed  CAS  Google Scholar 

  19. Leffell, M. S. and Spitznagel, J. K. (1975). Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effect of immunoglobulin G subclasses and immune complexes on coated latex beads. Infect. Immun., 12, 813–20

    PubMed  CAS  Google Scholar 

  20. Amherdt, M., Baggiolini, M., Perrelet, A. and Orci, L. (1978). Freeze-fracture of membrane fusions in phagocytosing polymorphonuclear leukocytes. Lab. Invest., 39, 398–404

    PubMed  CAS  Google Scholar 

  21. Hirsch, J. G. and Cohn, Z.A. (1960). Degranulation of polymorphonuclear leukocytes following phagocytosis of micro-organisms. J. Exp. Med., 112, 1005–22

    PubMed  CAS  Google Scholar 

  22. Burton, A.J. and Carter, H.E. (1964). Purification and characterization of the lipid A component of the lipopolysaccharides from Escherichia coli. Biochemistry, 3, 411–18

    CAS  Google Scholar 

  23. Elsbach, P. and Weiss, J. (1983). A revaluation of the roles of O2-dependent and O2- independent microbicidal systems of phagocytes. Rev. Infect. Dis., 5, 843–53

    PubMed  CAS  Google Scholar 

  24. Root, R. K. and Cohen, M. S. (1981). The microbicidal mechanisms of human neutrophils and eosinophils. Rev. Infect. Dis., 31, 565–98

    Google Scholar 

  25. Spitznagel, J. K. (1984). Non-oxidative antimicrobial reactions of leukocytes. Contemp. Top. Immunobiol., 14, 283–343

    PubMed  CAS  Google Scholar 

  26. Spitznagel, J. K. and Shafer, W. M. (1985). Neutrophil killing of bacteria by oxygen- independent mechanisms: A historical summary. Rev. Infect. Dis., 7, 398–403

    PubMed  CAS  Google Scholar 

  27. Mandell, G. L (1974). Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect. Immun., 9, 337–41

    PubMed  CAS  Google Scholar 

  28. Okaftiura, N. and Spitznagel, J. K. (1982). Outer membrane mutants of Salmonella typhimurium LT2 have lipopolysaccharide-dependent resistance to the bactericidal activity of anaerobic human neutrophils. Infect. Immun., 36, 1082–95

    Google Scholar 

  29. Vel, W. A. C., Namavar, F., Verweij, J. J., Pubben, A. N. B. and McLaren, D. M. (1984). Killing capacity of human polymorphonuclear leukocytes in anaerobic conditions. J. Med. Microb., 1, 173–80

    Google Scholar 

  30. McRipley, R.J. and Sbarra, A.J. (1967). Role of the phagocyte in host-parasite interaction. XII. Hydrogen peroxide-myeloperoxidase bactericidal system in phagocyte. J. Bacteriol., 94, 1425–30

    PubMed  CAS  Google Scholar 

  31. Segal, A. W., Geisow, M., Garcia, R., Harper, H. and Miller, R. (1981). The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature, 290,406–9

    PubMed  CAS  Google Scholar 

  32. Pryzwansky, K. B., Martin, L. E. and Spitznagel, J. K. (1978). Immune cytochemical localization of myeloperoxidase, lactoferrin, lysozyme and neutral proteases in human monocytes and neutrophilic granulocytes. J. Reticuloendothel. Soc., 24, 295–310

    PubMed  CAS  Google Scholar 

  33. Oram, J.D. and Reiter, B. (1968). Inhibition of bacteria by lactoferrin and other iron- chelating agents. Biochim. Biophys. Acta, 170, 351–65

    PubMed  CAS  Google Scholar 

  34. Bullen, J. J. and Wallis, S. N. (1977). Reversal of the bactericidal effect of polymorphs by a ferritin-antibody complex. FEMS (Microbiology) Lett., 1, 117–20

    CAS  Google Scholar 

  35. Arnold, R.R., Russell, J.E., Champion, W.J., Brewer, M. and Gauthier, J.J. (1982). Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun., 35, 792–9

    PubMed  CAS  Google Scholar 

  36. Klempner, M.S., Dinarello, C.A. and Gallin, J. (1978). I. Human leukocytic pyrogen induces release of specific granule contents from human neutrophils. J. Clin. Invest., 61, 1330–6

    PubMed  CAS  Google Scholar 

  37. Boxer, L. A., Coates, T. D., Haak, R. A., Wolach, J. B., Hoffstein, S. and Baehner, R. L. (1982). Lactoferrin deficiency associated with altered granulocyte function. N. Engl. J. Med., 387,404–10

    Google Scholar 

  38. Ambruso, D. R. and Johnston, R. B. Jr. (1981). Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J. Clin. Invest., 67, 352–60

    PubMed  CAS  Google Scholar 

  39. Klebanoff, S.J. (1982). Oxygen-dependent cytotoxic mechanisms of phagocytes. Adv. Host Def. Mech., 1, 111

    CAS  Google Scholar 

  40. Baggiolini, M. (1972). The enzymes of the granules of polymorphonuclear leukocytes and their function. Enzyme, 13, 132–60

    PubMed  CAS  Google Scholar 

  41. Strominger, J. L. and Ghuysen, J-M. (1967). Mechanism of enzymatic bacteriolysis. Science, 156, 213–21

    PubMed  CAS  Google Scholar 

  42. Brumfitt, W. (1959). The mechanism of development of resistance to lysozyme by some Gram-positive bacteria and its results. Br. J. Exp. Pathol., 40, 441–51

    PubMed  CAS  Google Scholar 

  43. Repaske, W. (1956). Lysis of Gram-negative bacteria by lysozyme. Biochim. Biophys. Acta, 22, 189–91

    PubMed  CAS  Google Scholar 

  44. Hirsch, J. G. (1956). Phagocytin: a bactericidal substance from polymorphonuclear leukocytes. J. Exp. Med., 103, 589–611

    PubMed  CAS  Google Scholar 

  45. Odeberg, H. and Olsson, I. (1976). Mechanisms for the microbicidal activity of cationic proteins of human granulocytes. Infect. Immun., 14, 1269–75

    PubMed  CAS  Google Scholar 

  46. Weiss, J., Elsbach, P., Olsson, D. and Odeberg, H. (1978). Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J. Biol. Chem., 253, 2664–72

    PubMed  CAS  Google Scholar 

  47. Zeya, H. I. and Spitznagel, J. K. (1966). Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties and mechanism of antibacterial action. J. Bacteriol., 91, 755–62

    PubMed  CAS  Google Scholar 

  48. Hirsch, J. G. (1960). Antimicrobial factors in tissues and phagocytic cells. Bacteriol. Rev., 21, 133–40

    Google Scholar 

  49. Zeya, H.I. and Spitznagel, J.K. (1968). Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogenecity. Exp. Med., 12, 927–41

    Google Scholar 

  50. Elsbach, P., Weiss, J., Franson, R. C., Beckerdite-Quagliata, S., Schneider, A. and Harris, L. (1979). Separation and purification of a potent bactericidal/permeability increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes. Observations on their relationship. J. Biol. Chem., 254, 11000–9

    PubMed  CAS  Google Scholar 

  51. Sbarra, A.J. and Karnovsky, M.L. (1959). The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem., 234, 1355–62

    PubMed  CAS  Google Scholar 

  52. Weiss, J., Beckerdite-Quagliata, S. and Elsbach, P. (1980). Resistance of Gram-negative bacteria to purified bactericidal leukocyte proteins. Relation to binding and bacterial lipopolysaccharide structure. J. Clin. Invest., 65, 619–28

    PubMed  CAS  Google Scholar 

  53. Weiss, J., Victor, M. and Elsbach, P. (1983). Role of charge and hydrophobic interaction in the action of bactericidal/permeability-increasing protein of neutrophils on Gram- negative bacteria. J. Clin. Invest., 71, 540–9

    PubMed  CAS  Google Scholar 

  54. Weiss, J., Kao, L., Victor, M. and Elsbach, P. (1985). Oxygen-independent intracellular and oxygen-dependent extracellular killing of Escherichia coli SI5 by human polymorphonuclear leukocytes. J. Clin. Invest., 76, 206–12

    PubMed  CAS  Google Scholar 

  55. Modrzakowski, M.C., Conney, M.H., Martin, L.E. and Spitznagel, J.K. (1979). Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes. Infect. Immun., 23, 587–91

    PubMed  CAS  Google Scholar 

  56. Rest, R. F., Cooney, M.H. and Spitznagel, J.K. (1978). Bactericidal activity of specific and azurophil granules from human neutrophils: studies with outer-membrane mutants of Salmonella typhimurium LT-2. Infect. Immun., 19, 131–7

    PubMed  CAS  Google Scholar 

  57. Rest, R.F., Cooney, M.H. and Spitznagel, J.K. (1977). Susceptibility of lipopolysaccharide mutants to the bactericidal action of human neutrophil lysosomal fractions. Infect. Immun., 16, 145–51

    PubMed  CAS  Google Scholar 

  58. Selsted, M. E., Szklarek, D. and Lehrer, R. I. (1984). Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun., 45, 150–4

    PubMed  CAS  Google Scholar 

  59. Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S. L., Daher, K., Bainton, D. F. and Lehrer, R. J. (1985). Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest., 76, 1427–35

    PubMed  CAS  Google Scholar 

  60. Selsted, M. E., Harwig, S. S. L., Ganz, T., Schilling, J. W. and Lehrer, R. I. (1985). Primary structures of three human neutrophil defensins. J. Clin. Invest., 76, 1436–9

    PubMed  CAS  Google Scholar 

  61. Gabay, J. E., Heiple, J. M., Cohn, A. Z. and Nathan, C. F. (1986). Subcellular location and properties of bactericidal factors from human neutrophils. J. Exp. Med., 164, 1407–21

    PubMed  CAS  Google Scholar 

  62. Borregaard, N., Heiple, J.M., Simons, E.R. and Clark, R. A. (1983). Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J. Cell. Biol., 97, 52–61

    PubMed  CAS  Google Scholar 

  63. Cohen, M.S. and Cooney, M.H. (1984). A bacterial respiratory burst: Stimulation of Neisseria gonorrhoeae by human serum. J. Infect. Dis., 150, 49–56

    PubMed  CAS  Google Scholar 

  64. Britigan, B. E. and Cohen, M. S. (1986). Effects of human serum on bacterial competition with neutrophils for molecular oxygen. Infect. Immun., 52, 657–63

    PubMed  CAS  Google Scholar 

  65. McPhail, L. C., Henson, P. M. and Johnston, R. B. Jr. (1981). Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation. J. Clin. Invest., 67, 710–16

    PubMed  CAS  Google Scholar 

  66. Babior, B. M. (1978). Oxygen-dependent microbial killing by phagocytes. N. Engl. J. Med., 298, 659–720

    PubMed  CAS  Google Scholar 

  67. Babior, B. M. (1984). Oxidants from phagocytes: agents and defense and destruction. Blood, 64, 959–66

    PubMed  CAS  Google Scholar 

  68. Babior, B. M., Kipnes, R. S. and Curnutte, J. T. (1973). Biological defense mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest., 52, 741–4

    PubMed  CAS  Google Scholar 

  69. Iyer, G. Y. N., Islam, M. F. and Quastel, J. H. (1961). Biochemical aspects of phagocytosis. Nature, 192, 535–41

    CAS  Google Scholar 

  70. Gabig, T. G., Lefker, B. A., Ossanna, P. J. and Weiss, S. J. (1984). Proton stoichiometry associated with human neutrophil respiratory-burst reactions. J. Biol. Chem., 259, 13166—71

    PubMed  CAS  Google Scholar 

  71. Gabig, T. G. and Lefker, B.A. (1984). Catalytic properties of the resolved flavoprotein and cytochrome b components of the NADPH dependent O -2 generating oxidase from human neutrophils. Biochem. Biophys. Res. Commun., 118, 430–6

    PubMed  CAS  Google Scholar 

  72. Gabig, T. G. and Lefker, B. A. (1984). Deficient flavoprotein component of the NADPH- dependent O -2 generating oxidase in the neutrophils from three male patients with chronic granulomatous disease. J. Clin. Invest., 73, 701–5

    PubMed  CAS  Google Scholar 

  73. Voetman, A. A., Loos, J. A. and Roos, D. (1980). Changes in the levels of glutathione in phagocytosing human neutrophils. Blood, 55, 741–7

    PubMed  CAS  Google Scholar 

  74. Fridovich, I. (1975). Superoxide dismutase. Annu. Rev. Biochem., 44, 147–59

    PubMed  CAS  Google Scholar 

  75. Weiss, S. J., Rustagi, P. K. and LoBuglio, A.F. (1978). Human granulocyte generation of hydroxyl radical. J. Exp. Med., 147, 316–23

    PubMed  CAS  Google Scholar 

  76. Gregory, E. M. and Fridovich, I. (1974). Oxygen metabolism in Lactobacillus plantarum. J. Bacteriol., 117, 166–9

    CAS  Google Scholar 

  77. Root, R.K., Metcalf, J., Oshino, N. and Chance, B. (1975). H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation and some regulating factors. J. Clin. Invest., 55, 945–55

    PubMed  CAS  Google Scholar 

  78. Root, R. K. and Metcalf, J. A. (1978). H2O2 release from human granulocytes during phagocytosis. J. Clin. Invest., 60, 1266–79

    Google Scholar 

  79. Rosen, H. and Klebanoff, S.J. (1979). Bactericidal activity of a superoxide anion generating system: a model for the polymorphonuclear leukocyte. J. Exp. Med., 149, 27–39

    PubMed  CAS  Google Scholar 

  80. Drath, D. B. and Karnovsky, M. L. (1974). Bactericidal activity of metal-mediated peroxide-ascorbate systems. Infect. Immun., 10, 1077–83

    PubMed  CAS  Google Scholar 

  81. Haber, F. and Weiss, J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lond. (A), 147, 332–51

    CAS  Google Scholar 

  82. Klebanoff, S.J. (1967). Iodination of bacteria: a bactericidal mechanism. J. Exp. Med., 126, 1063–78

    PubMed  CAS  Google Scholar 

  83. Klebanoff, S. J. (1968). Myeloperoxidase-halide-hydrogen peroxide antibacterial system. Bacteriol., 95, 2131–8

    CAS  Google Scholar 

  84. Weiss, S. J., Lampert, M.B. and Test, S.T. (1983). Long lived oxidants generated by human neutrophils: characterization and bioactivity. Science, 222, 625–8

    PubMed  CAS  Google Scholar 

  85. Passo, S. A. and Weiss, S. J. (1984). Oxidative mechanisms utilized by human neutrophils to destroy E. coli. Blood, 63, 1362–8

    Google Scholar 

  86. Stelmaszynska, T. and Zgliczynski, J. M. (1974). Myeloperoxidase of human neutrophilic granulocytes as chlorinating enzyme. Eur. J. Biochem., 45, 305–12

    PubMed  CAS  Google Scholar 

  87. Thomas, E. L. (1979). Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect. Immun., 23, 522–31

    CAS  Google Scholar 

  88. Zgliczynski, J. M. and Stelmaszynska, T. (1975). Chlorinating ability of human phag- ocytosing leukocytes. Eur. J. Biochem., 56, 157–62

    PubMed  CAS  Google Scholar 

  89. Paul, B. B., Jacobs, A. A., Strauss, R. R. and Sbarra, A. J. (1970). Role of the phagocyte in host-parasite interactions. XXIV. Aldehyde generation by the myeloperoxidase-H2-O2- chloride antimicrobial system: a possible in vivo mechanism of action. Infect. Immun., 2, 414–18

    PubMed  CAS  Google Scholar 

  90. Strauss, R. R., Paul, B. B., Jacobs, A. A. and Sbarra, A. J. (1970). Role of the phagocyte in host-parasite interactions. XXII. H2O2-dependent decarboxylation and deamination by myeloperoxidase and its relationship to antimicrobial activity. J. Reticuloendothel. Soc., 7, 754–61

    PubMed  CAS  Google Scholar 

  91. Strauss, R. R., Paul, B. B., Jacobs, A. A. and Sbarra, A. J. (1971). Role of the phagocyte in host-parasite interactions. XXVII. Myeloperoxidase-H2O2-Cl-mediated aldehyde formation and its relationship to antimicrobial activity. Infect. Immun., 3, 595–602

    PubMed  CAS  Google Scholar 

  92. Zgliczynski, J. M., Stelmaszynska, T., Ostrowski, W., Naskalski, J. and Sznajd, J. (1968). Myeloperoxidase of human leukaemic leukocytes: oxidation of amino acids in the presence of hydrogen peroxide. Eur. J. Biochem., 4, 540–7

    PubMed  CAS  Google Scholar 

  93. Repine, J. E., Eaton, J. W., Anders, M. W., Hoidal, J. R. and Fox, R. B. (1979). Generation of hydroxyl radical by enzymes, chemicals and human phagocytes in vitro. J. Clin. Invest., 64, 1642–51

    PubMed  CAS  Google Scholar 

  94. Rosen, H. and Klebanoff, S. J. (1979). Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy. J. Clin. Invest., 64, 1725–9

    PubMed  CAS  Google Scholar 

  95. Halliwell, B. (1978). Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett., 92, 321–6

    PubMed  CAS  Google Scholar 

  96. Weinstein, J.H. and Bilski, B.H.J. (1979). Kinetics of the interaction of HO2 and O2 radicals with hydrogen peroxide: the Haber-Weiss reaction. J. Am. Chem. Soc., 101, 58–62

    CAS  Google Scholar 

  97. Aisen, P. and Leibmann, A. (1972). Lactoferrin and transferrin, a comparative study. Biochim. Biophys. Acta, 257, 314–23

    PubMed  CAS  Google Scholar 

  98. Baldwin, D. A., Jenny, E. R. and Aisen, P. (1984). The effect of human serum transferrin and milk lactoferrin on ·OH radical production. J. Biol. Chem., 259, 13391–4

    PubMed  CAS  Google Scholar 

  99. Winterbourn, C. C. (1983). Lactoferrin-catalyzed hydroxyl radical production. Biochem. J., 210, 15–19

    PubMed  CAS  Google Scholar 

  100. Gutteridge, J. M. C., Peterson, S. K., Segal, A. W. and Halliwell, B. (1981). Inhibition of lipid peroxidation by the iron binding protein lactoferrin. Biochem. J., 199, 259–61

    PubMed  CAS  Google Scholar 

  101. Britigan, B.E., Rosen, G.M., Thompson, B.Y., Chai, Y. and Cohen, M.S. (1987). Stimulated human neutrophils limit iron catalyzed hydroxyl radical formation as detected by spin trapping. J. Biol. Chem., 261, 17026–32

    Google Scholar 

  102. Britigan, B. E., Rosen, G. M., Chai, Y. and Cohen, M. S. (1986). Do human neutrophils make hydroxyl radical? J. Biol. Chem., 261, 4426–31

    PubMed  CAS  Google Scholar 

  103. Thomas, M. J., Shirley, P. S., Hedrich, C. C. and De Chatelet, L. R. (1986). Role of free radical processes in stimulated human PMN. Biochemistry, 25, 8042–8

    PubMed  CAS  Google Scholar 

  104. Repine, J. E., Fox, R. B. and Berger, E. M. (1982). Hydrogen peroxide kills S. aureus by reacting with the staphylococcal iron to form hydroxyl radical. J. Biol. Chem., 256, 7094–6

    Google Scholar 

  105. Weitzmann, S. A. and Stossel, T. P. (1981). Mutation caused by human phagocytes. Science, 212, 546–7

    Google Scholar 

  106. Weitzmann, S. A. and Stossel, T. P. (1982). Effects of oxygen radical scavengers and antioxidants on phagocyte-induced mutagenesis. J. Immunol., 128, 2770–2

    Google Scholar 

  107. Mandell, G.J. (1975). Catalase, superoxide dismutase and virulence of Staphylococcus aureus. In vitro and vivo studies with emphasis on staphylococcal-leukocyte interactions. J. Clin. Invest., 55, 561–6

    PubMed  CAS  Google Scholar 

  108. Yost, F.J. Jr. and Fridovich, I. (1974). Superoxide radicals and phagocytosis.. Arch. Biochem. Bioph., 161, 395–401

    CAS  Google Scholar 

  109. Kreutzer, D.L., Dreyfus, L. A. and Robertson, D.C. (1979). Interaction of polymorphonuclear leukocytes with smooth and rough strains of Brucella abortus. Infect. Immun., 23, 737–42

    PubMed  CAS  Google Scholar 

  110. Rozenberg-Arska, M., Salters, M.E.C., van Strijp, J.A.G., Geuze, J.J. and Verhoef, J. (1985). Electron microscopic study of phagocytosis of Escherichia coli by human polymorphonuclear leukocytes. Infect. Immun., 50, 852–9

    PubMed  CAS  Google Scholar 

  111. Hahn, H. and Kaufmann, S. H. E. (1981). The role of cell-mediated immunity in bacterial infections. Rev. Infect. Dis., 3, 1221–50

    PubMed  CAS  Google Scholar 

  112. Elsbach, P. (1974). Phagocytosis. In Zweifach, B.W., Grant, L. and McCluskey, R.T. (eds.). The Inflammatory Process, Vol 1, pp. 363–408. (NY: Academic Press)

    Google Scholar 

  113. Hirsch, J. G. (1974). Neutrophil leukocytes. In Zweifach, B. W., Grant, L. and McCluskey, R. T. (eds.) The Inflammatory Process, Vol 1, pp. 411–447. (NY: Academic Press)

    Google Scholar 

  114. Hirschhorn, R. (1974). Lysosomal mechanism in the inflammatory process. In Zweifach, B. W., Grant, L. and McCluskey, R. T. (eds.). The Inflammatory Process., Vol 1, pp. 259–285. (NY: Academic Press)

    Google Scholar 

  115. Steinman, R. M. and Cohn, Z. A. (1974). The metabolism and physiology of the mononuclear phagocytes. In Zweifach, B.W., Grant, L. and McCluskey, R.T. (eds.) The Inflammatory Process, Vol. 1, pp. 447–510. (NY: Academic Press)

    Google Scholar 

  116. Cohn, Z. A. (1963). The fate of bacteria within phagocytic cells. J. Exp. Med., 117, 27–42

    PubMed  CAS  Google Scholar 

  117. Elsbach, P., Pettis, O., Beckerdite, S. and Franson, R. (1973). Effect of phagocytosis by rabbit granulocytes on macromolecular synthesis and degradation in different species of bacteria. J. Bacteriol., 115, 490–7

    PubMed  CAS  Google Scholar 

  118. Patriarca, P., Beckerdite, S., Pettis, P. and Elsbach, P. (1972). Phospholipid metabolism by phagocytic cells. VII. The degradation and utilization of phospholipids of various microbial species by rabbit granulocytes. Biochim. Biophys. Acta, 280, 45–56

    PubMed  CAS  Google Scholar 

  119. Elsbach, P. (1980). Degradation of microorganisms by phagocytic cells. Rev. Infect. Dis., 2, 106–28

    PubMed  CAS  Google Scholar 

  120. Lamers, M.C., de Groot, E. R. and Roos, D. (1981). Phagocytosis and degradation of DNA-anti-DNA complexes by human phagocytes. I. Assay conditions, quantitative aspects and differences between human blood monocytes and neutrophils. Eur. J. Immunol., 11, 757–64

    PubMed  CAS  Google Scholar 

  121. Rozenberg-Arska, M., van Strijp, J.A.G., Hoekstra, W.P.M. and Verhoef, J. (1984). Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNAse. J. Clin. Invest., 73, 1254–62

    PubMed  CAS  Google Scholar 

  122. Eschenbach, C. (1971). Cytochemischer nachweis von saurer deoxyribonuclease im cyto- plasma van blutzellen. II. Activität der sauren deoxyribonuclease im cytoplasma von leukocyten während akuter infectionen. Klin. Wochenschr., 49, 949–68

    CAS  Google Scholar 

  123. Bornstein, D. L., Weinberg, A. N. and Swartz, M. N. (1966). A deoxyribonuclease from rabbit leukocytes. Proc. Soc. Exp. Biol. Med., 121, 677–81

    PubMed  CAS  Google Scholar 

  124. Costerton, J.W., Ingram, J. M. and Cheng, K.J. (1974). Structure and function of the cell envelope of Gram-negative bacteria. Bacteriol. Rev., 38, 87–110

    PubMed  CAS  Google Scholar 

  125. Horovitz, M. A. and Silverstein, S. C. (1980). Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J. Clin. Invest., 65, 82–94

    Google Scholar 

  126. Rozenberg-Arska, M., van Asbeck, B. S., Martens, T. F. J. and Verhoef, J. (1985). Damage to chromosomal and plasmid DNA by toxic oxygen species. J. Gen. Microb., 131, 3325–30

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rozenberg-Arska, M., Hoepelman, I.M., Verhoef, J. (1989). Antimicrobial Functions of Neutrophils. In: Klempner, M.S., Styrt, B., Ho, J. (eds) Phagocytes and Disease. Immunology And Medicine Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1279-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1279-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7068-3

  • Online ISBN: 978-94-009-1279-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics