Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 26))

Abstract

Ethylene — a symmetrical two carbon gaseous hydrocarbon with four hydrogens and one double bond. How does such a tiny, volatile, uncharged molecule (molecular weight 28.05) come to play such a central role in the growth of plants?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DO and Yang SF, 1977. Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 60: 892–896.

    Article  PubMed  CAS  Google Scholar 

  • Adams DO and Yang SF,1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76: 170–174.

    Google Scholar 

  • Beyer EM Jr. and Morgan PW, 1969. Ethylene modification of an auxin pulse in cotton stem sections. Plant Physiol. 44: 1690–1694.

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Herner RC and Kende H, 1979. Assay for and enzymic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145: 293–303.

    Article  CAS  Google Scholar 

  • Brooks KE, 1973. Reproductive biology of Selaqinella. 1 Determination of megasporangia by 2-chloroethylphosphonic acid, an ethylene-releasing compound. Plant Physiol. 51: 718–722.

    Article  PubMed  CAS  Google Scholar 

  • Burg SP and Stolwijk JA, 1959. A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J. Biochem. Microbiol. Technol. Eng. 1: 245–259.

    Article  CAS  Google Scholar 

  • Burg SP and Burg EA, 1968. Ethylene formation in pea seedlings; its relation to the inhibition of bud growth caused by indole-3-acetic acid. Plant Physiol. 43: 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Burg SP, 1973. Ethylene in plant growth. Proc. Nat. Acad. Sci. USA 70: 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Cookson C and Osborne DJ, 1978. The stimulation of cell extension by ethylene and auxin in aquatic plants. Planta 144: 39–47.

    Article  CAS  Google Scholar 

  • Gane R, 1934. Production of ethylene by some ripening fruit. Nature 134: 1008.

    Article  CAS  Google Scholar 

  • Girardin JPL, 1864. Einfluss des Leuchtgases auf die promenaden-und strassen- Bäume. Jahresb. Agr. 7: 199–200.

    Google Scholar 

  • Huelin FE and Kennett BH, 1959. Nature of the olefines produced by apples. Nature 184: 996–997.

    Article  CAS  Google Scholar 

  • Irvine RF and Osborne DJ, 1973. The effect of ethylene on 1–14C glycerol incorporation into phospholipids of etiolated pea stems. Biochem. J. 136: 1133–1135.

    PubMed  CAS  Google Scholar 

  • Kevers C, Vanden Driessche T and Gaspar T, 1986. An ethylene-forming system in Acetabularia mediterranea. Relationship with development. Arch. int Physiol. Biochem. 94: 51.

    Google Scholar 

  • Ku HS, Suge H, Rappaport L and Pratt HK, 1970. Stimulation of rice coleoptile growth by ethylene. Planta 90: 333–339.

    Article  CAS  Google Scholar 

  • Lieberman M, Kunishi AT, Mapson LW and Wardale DA, 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 41: 376–382.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln JE, Cordes S, Read E and Fischer RL, 1987. Regulation of gene expression by ethylene during Lvcopersicon esculeantum (tomato) fruit development. Proc. Natl. Acad. Sci. USA 84: 2793–2797.

    Google Scholar 

  • Mohan-Ram HY and Jaiswal VS, 1970. Induction of female flowers on male plants of Cannabis sativa by 2-chloroethanephosphonic acid. Experientia 26: 214–216.

    Article  Google Scholar 

  • Morgan PW and Hall WC, 1962. Effect of 2:4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum. Physiol. Plantarum 15: 420–427.

    Article  CAS  Google Scholar 

  • Morgan PW and Hall WC, 1964. Accelerated release of ethylene by cotton following application of indole-3-acetic acid. Nature 201: 99.

    Article  CAS  Google Scholar 

  • Musgrave A, Jackson, MB and Ling E, 1972. Callitriche stem elongation is controlled by ethylene and gibberellin. Nature, New Biol. 238: 93–96.

    Google Scholar 

  • Neljubow D, 1901. Uber die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen. Beih. Bot. Centralbl. 10: 128–139.

    Google Scholar 

  • Rudich J, Halevy AH and Kedar N, 1969. Increase in femaleness of three cucurbits by treatment with Ethel, an ethylene releasing compound. Planta 86: 69–76.

    Article  CAS  Google Scholar 

  • Rudich J, Halevy AH and Kedar N, 1972. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49: 998–999.

    Article  PubMed  CAS  Google Scholar 

  • Russell W and Thimann KV, 1988. Abstract 227, of the Plant Growth Regulator Conference, Calgary.

    Google Scholar 

  • Tittle FL, 1987. Auxin-stimulated ethylene production in fern gametophytes and sporophytes. Physiol. Plantarum 70: 499–502.

    Article  CAS  Google Scholar 

  • Walters J and Osborne DJ, 1979. Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant Regnellidium diphyllum. Planta 146: 309–317.

    CAS  Google Scholar 

  • Woodson WR and Lawton KA, 1988. Ethylene-induced gene expression in carnation petals. Plant Physiol. 87: 498–503.

    Article  PubMed  CAS  Google Scholar 

  • Wright M and Osborne DJ, 1974. Abscission in Phaseolus vulqaris. The positional differentiation and ethylene induced expansion of specialized cells. Planta 120: 163–170.

    Article  CAS  Google Scholar 

  • Yu YB, Adams DO and Yang SF, 1979. 1-aminocyclopropane-carboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 198: 280–286.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Osborne, D.J. (1989). The Control Role of Ethylene in Plant Growth and Development. In: Clijsters, H., De Proft, M., Marcelle, R., Van Poucke, M. (eds) Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants. Advances in Agricultural Biotechnology, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1271-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1271-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7065-2

  • Online ISBN: 978-94-009-1271-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics