Irradiation Effects in Ices by Energetic Ions

  • J. Benit
  • J-P. Bibring
  • F. Rocard
Part of the NATO ASI Series book series (NSSE, volume 155)


It has been shown that the irradiation of ices leads to “giant” erosion yields, in some specific conditions (1,2). In order to understand the physical processes involved, we have performed direct in-situ measurements of the erosion during irradiation, by means of infrared spectrometry of the ices. In this paper, we summarize the main results we obtained, during the irradiation of a number of ices (pure H2O or CH4; mixtures: H2O + CO2; H2O + NH3; CO2 + NH3) with ions in a wide range of energy (a few keV/u to a few MeV/u) and mass. We have performed experiments both with chemically reactive ions (C, N, H, H2) and unreactive ones (He, Ne, Ar, Kr). In addition to the erosion process, we discuss the synthesis of molecular species, induced by the irradiation. Furthermore, we have analyzed the ions desorbed from the targets during the irradiation, by time of flight mass spectrometry. The comparison between the yields of erosion and of ion desorption gives information on the ion/neutral ratio of the ejected material, as well as its dependence with mass and energy of the incident particles. We conclude this paper with some astrophysical implications of our results.


Incident Particle Abundant Cluster Desorption Yield Astrophysical Implication Molecular Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.L. Brown, L.J. Lanzerotti and W.M. Augustyniak: Phys. Rev. Lett., 40, 1027, 1978.CrossRefGoogle Scholar
  2. 2.
    B.H. Cooper and T.A. Tombrello: Rad. Effects, 80, 203, 1984.CrossRefGoogle Scholar
  3. 3.
    J. Camplan, R. Meunier and C. Fatu: Proc. 8th Int* EMIS Conference, Skovde, eds., G. Anderson and G. Holman, 186, 1973.Google Scholar
  4. 4.
    S. Della-Negra, 0. Becker, R. Cotter, Y. Le Beyec, B. Monart, K. Standing and K. Wien: IPN0-DRE, 86.09, 1986Google Scholar
  5. 5.
    F. Rocard, J. Benit, J-P. Bibring, D. Ledu and R. Meunier: Rad. Effects, 99, 97, 1986.CrossRefGoogle Scholar
  6. 6.
    S. Delia Negra, D. Jacquet, I. Lorthiois, Y. Le Beyec, 0. Becker and K. Wien: Intern. J. Mass Spectrom. and Ion Proc., 53, 215, 1983.CrossRefGoogle Scholar
  7. 7.
    J-P. Thomas, P.E. Filpus-Luyckx, M. Fallavier and E.A. Schweikert: Phys. Rev. Lett., 55, 103, 1985.CrossRefGoogle Scholar
  8. 8.
    F. Rocard: These de Doctorat, Universite Paris Sud, Orsay, 1986.Google Scholar
  9. 9.
    H.H. Andersen and J.F. Ziegler: The stopping and ranges in all elements. Vol. 3, New York: Pergamon Press, 1980.Google Scholar
  10. 10.
    J-P. Bibring and F. Rocard: Adv. Space. Res., 4, No 12, 103, 1984CrossRefGoogle Scholar
  11. 11.
    M. Combes, V.I. Moroz, J-F. Criffo, J-M. Lamarre, J. Charra, N.F. Sanko, A. Soufflot, J-P. Bibring, S. Cazes, N. Coron, J. Crovisier, C. Emerich, T. Encrenaz, R. Gispert, A.V. Grigoryev, G. Guyot, V.A. Krasnopolsky, Y.V. Nikolsky and F. Rocard: Nature 321, 266, 1986.CrossRefGoogle Scholar
  12. 12.
    S.P. Willner, R.C. Puetter, R.W. Russell and B.T. Soifer: Astroph. Space Scien., 65, 95, 1979.CrossRefGoogle Scholar
  13. 13.
    L. Calcagno, G. Foti and L. Torrisi: Icarus, 63, 31, 1985CrossRefGoogle Scholar
  14. 14.
    M.H. Moore, B. Donn, R. Khanna and M.F. A’Hearn: Icarus, 54, 388, 1983.CrossRefGoogle Scholar
  15. 15.
    Y. Langevin, J. Kissel, J-L. Bertaux and E. Chassefiere: Astron. Astroph., in press, november 1987.Google Scholar
  16. 16.
    L.J. Lanzerotti, W.L. Brown and R.E. Johnson: Proc. Nato Adv. Res. Workshop: Ices in the Solar System. Nice, 1984Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. Benit
    • 1
  • J-P. Bibring
    • 1
  • F. Rocard
    • 1
  1. 1.Laboratoire Rene Bernas du CSNSMOrsayFrance

Personalised recommendations