The Biochemistry of Lipoproteins

  • A. M. Salter
  • D. N. Brindley


Lipids are transported in the blood in four major classes of lipoproteins. The triacylglycerol-rich lipoproteins are chylomicrons and very-low-density lipoproteins (VLDL) which are produced by the small intestine and liver, respectively. These lipoproteins mainly carry fatty acids to adipose tissue and muscle where the triacylglycerol is hydrolysed by lipoprotein lipase. The resulting particles that remain in the blood are chylomicron remnants and low-density lipoprotein (LDL), respectively. The remnant is taken up by the liver via endocytosis which is mediated by a specific receptor for apolipoprotein E (apoE). LDL, which are rich in cholesterol, can also be taken up by the liver or extrahepatic tissues by a receptor-mediated endocytosis that specifically recognises apoB or apoE. ‘Nascent’ high-density lipoprotein (HDL) particles are secreted by the liver and intestine and then undergo modification to become HDL3 and then HDL2 as they acquire cholesterol ester. They facilitate the reverse transport of cholesterol back to the liver.

Little is known of the hormonal regulation of lipoprotein uptake by the liver. Recently, we have shown that insulin and tri-iodothyronine (T3) increase the specific binding of LDL to cultured hepatocytes whereas dexamethasone (a synthetic glucocorticoid) has the opposite effect. The changes in binding produced by insulin and dexamethasone are paralleled by alterations in the rate of degradation of apoB. These findings may in part explain the hypercholesterolaemia and increased risk of premature atherosclerosis that can be associated with poorly controlled diabetes or hypothyroidism.


Lipoprotein Lipase Cholesterol Ester Cholesterol Efflux Familial Hypercholesterolaemia Chylomicron Remnant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. W., Nichols, A. V., Pan, S. S. and Lindgren, F. T. High-density lipoprotein distribution-resolution and determination of three major components in a normal population sample. Atherosclerosis 29 (1978) 161–179PubMedCrossRefGoogle Scholar
  2. Bachorik, P. S., Franklin, F. A., Virgil, D. G. and Kwiterovich, P. O. High affinity uptake and degradation of apolipoprotein E free high-density lipoprotein and low-density lipoprotein in cultured porcine hepatocytes. Biochemistry 21 (1982) 5675–5684PubMedCrossRefGoogle Scholar
  3. Bengtsson, G. and Olivecrona, T. Lipoprotein lipase: Some effects of activator proteins. Eur. J. Biochem. 106 (1980) 549–555PubMedCrossRefGoogle Scholar
  4. Brown, M. S., and Goldstein, J. L. Lipoprotein receptors in the liver. Control signals for cholesterol traffic. J. Clin. Invest. 72 (1983) 743–747PubMedCrossRefGoogle Scholar
  5. Carew, T. E., Pittman, R. C. and Steinberg, D. Tissue sites of degradation of native and reductively methylated [14C]sucrose-labelled low-density lipoprotein in rats. Contribution of receptor-dependent and receptor-independent pathways. J. Biol. Chem. 257 (1982) 8001–8008PubMedGoogle Scholar
  6. Chapman, J. M. Comparative analysis of mammalian plasma lipoproteins. In Segrest, J. P. and Albers, J. J. (eds.). Methods in Enzymology 128. Plasma Lipoproteins. Part A. Preparation, Structure and Molecular Biology, Academic Press, New York, (1986) 70–147Google Scholar
  7. Cryer, A. Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. Int. J. Biochem. 13 (1981) 525–541PubMedCrossRefGoogle Scholar
  8. Durrington, P. N., Newton, R. S., Weinstein, A. B. and Steinberg, D. Effects of insulin and glucose on very low density lipoprotein secretion by cultured rat hepatocytes. J. Clin. Invest. 70 (1982) 63–73PubMedCrossRefGoogle Scholar
  9. Edge, S. B., Hoeg, J. M., Triche, T., Schneider, P. D. and Brewer, H. B. Cultured human hepatocytes. Evidence for metabolism of low-density lipoproteins by a pathway independent of the classical low-density lipoprotein receptor. J. Biol. Chem. 261 (1986) 3800–3806PubMedGoogle Scholar
  10. Eisenberg, S. High-density lipoprotein metabolism. J. Lipid Res. 25 (1984) 1017–1058PubMedGoogle Scholar
  11. Fielding, C. J. and Fielding, P. E. Cholesterol transport between cells and body fluids. Role of plasma lipoproteins and the plasma cholesterol esterification system. Med. Clin. North. Am. 66 (1982) 363–373PubMedGoogle Scholar
  12. Fong, B. S., Rodrigues, P. O., Salter, A. M., Yip, B. P., Despres, J. P., Gregg, R. E. and Angel, A. Characterization of high-density lipoprotein binding to human adipocyte plasma membranes. J. Clin. Invest. 75 (1985) 1804–1812PubMedCrossRefGoogle Scholar
  13. Fong, B. S., Salter, A. M., Jimenez, J. and Angel, A. The role of apolipoprotein AI and apolipoprotein AII in high-density lipoprotein binding to human adipocyte plasma membranes. Biochim. Biophys. Acta 920 (1987) 105–113PubMedCrossRefGoogle Scholar
  14. Glass, C., Pittman, R. C., Weinstein, D. B. and Steinberg, D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein AI of rat plasma high-density lipoprotein: Selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc. Natl. Acad. Sci. USA 80 (1983) 5435–5439PubMedCrossRefGoogle Scholar
  15. Goldstein, J. L. and Brown, M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46 (1977) 897–930PubMedCrossRefGoogle Scholar
  16. Goldstein, J. L., Kita, T. and Brown, M. S. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N. Engl. J. Med. 309 (1983) 288–296PubMedCrossRefGoogle Scholar
  17. Green, P. H. R., Tall, A. R. and Glickman, R. M. Rat intestine secretes discoidal high-density lipoprotein. J. Clin. Invest. 61 (1978) 528–534PubMedCrossRefGoogle Scholar
  18. Graham, D. L. and Oram, J. F. Identification and characterization of a high-density lipoprotein binding protein in cell membranes by ligand blotting. J. Biol. Chem. 262 (1987) 7439–7442PubMedGoogle Scholar
  19. Gwynne, J. T. and Strauss, J. F. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocrinol. Rev. (1982) 299–329Google Scholar
  20. Hamilton, R. L., Williams, M. C., Fielding, C. J. and Havel, R. J. Discoidal bilayer structure of nascent high-density lipoproteins from perfused rat liver. J. Clin. Invest. 58 (1976) 667–680CrossRefGoogle Scholar
  21. Havekes, L. M., Schouten, D., deWit, E. C. M., Cohen, L. H., Griffioen, M., van Hinsbergh, V. W. M. and Princen, H. M. G. Stimulation of the LDL receptor activity in the human hepatoma cell line HepG2 by high-density serum fractions. Biochim. Biophys. Acta 875 (1986) 236–246PubMedCrossRefGoogle Scholar
  22. Havel, R. J., Kane, J. P. and Kashyap, M. L. Interchange of apolipoproteins between chylomicrons and high-density lipoproteins during alimentary lipemia in man. J. Clin. Invest. 52 (1973) 32–38PubMedCrossRefGoogle Scholar
  23. Havel, R. J. Role of the liver in atherosclerosis. Arteriosclerosis 5 (1985) 569–580PubMedCrossRefGoogle Scholar
  24. Heimberg, M., Olubadewo, J. O. and Wilcox, H. G. Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states. Endocrine Rev. (1985) 590–607Google Scholar
  25. Hoeg, J. M., Edge, S. B., Demonsky, S. J., Starzl, T. E., Triche, T., Gregg, R. E. and Brewer, H. B. Metabolism of low-density lipoproteins by cultured hepatocytes from normal and homozygous familial hypercholesterolemic subjects. Biochim. Biophys Acta 876 (1986) 646–657PubMedCrossRefGoogle Scholar
  26. Hui, D. Y., Innerarity, T. L. and Mahley, R. W. Lipoprotein binding to canine hepatic membranes. Metabolically distinct apoE and apoB, E receptors. J. Biol. Chem. 256 (1981) 5646–5655PubMedGoogle Scholar
  27. Jackson, R. L., Pattus, F. and DeHaas, G. Mechanism of action of milk lipoprotein lipase at substrate interfaces: Effects of apolipoproteins. Biochemistry 19 (1980) 373–378PubMedCrossRefGoogle Scholar
  28. Kita, T., Brown, M. S., Bilheimer, D. W. and Goldstein, J. L. Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc. Natl. Acad. Sci. USA 79 (1982) 5693–5697PubMedCrossRefGoogle Scholar
  29. Laker, M. E. and Mayes, P. A. Investigations into the direct effects of insulin on hepatic ketogenesis, lipoprotein secretion and pyruvate dehydrogenase activity. Biochim. Biophys. Acta 795 (1984) 427–430PubMedCrossRefGoogle Scholar
  30. Mahley, R. W. and Innerarity, T. L. Lipoprotein receptors and cholesterol homeostasis. Biochim. Biophys. Acta 737 (1983) 197–222PubMedCrossRefGoogle Scholar
  31. Mangiapane, E. H. and Brindley, D. N. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem. J. 233 (1986) 151–160PubMedGoogle Scholar
  32. Miller, G. J. and Miller, N. E. Plasma high-density lipoprotein concentration and development of ischaemic heart disease. Lancet 1 (1975) 16–19PubMedCrossRefGoogle Scholar
  33. Nestruck, A., Christine, A. N. D. and Rubinstein, D. The synthesis of apoproteins of very low density lipoproteins isolated from the Golgi apparatus of rat liver. Can. J. Biochem. 54 (1976) 617–628PubMedCrossRefGoogle Scholar
  34. Oram, J. F., Albers, J. J., Cheung, M. C. and Bierman, E. L. The effects of subfractions of high-density lipoprotein on cholesterol efflux from cultured fibroblasts. J. Biol. Chem. 256 (1981) 8348–8356PubMedGoogle Scholar
  35. Oram, J. F. Effects of high-density lipoprotein subfractions on cholesterol homeostasis in human fibroblasts and arterial smooth muscle cells. Arteriosclerosis 3 (1983) 420–432PubMedCrossRefGoogle Scholar
  36. Ose, L., Ose, T., Norum, K. R. and Berg, T. Uptake and degradation of 125I-labelled high-density lipoproteins in rat liver cells in vivo and in vitro. Biochim. Biophys. Acta 574 (1979) 521–536PubMedCrossRefGoogle Scholar
  37. Patsch, J. R., Gotto, A. M. Jr, Olivecrona, T. and Eisenberg, S. Formation of high-density lipoprotein 2-like particles during lypolysis of very low density lipoproteins in vitro. Proc. Natl. Acad. Sci. USA 75 (1978) 4519–4528PubMedCrossRefGoogle Scholar
  38. Patsch, W., Franz, S. and Schonfeld, G. Role of insulin in lipoprotein secretion by cultured rat hepatocytes. J. Clin. Invest. 71 (1983) 1161–1174PubMedCrossRefGoogle Scholar
  39. Pullinger, C. R. and Gibbons, G. F. Effects of hormones and pyruvate on the rates of secretion of very-low-density lipoprotein triacylglycerol and cholesterol by rat hepatocytes. Biochim. Biophys. Acta 833 (1985) 44–51PubMedCrossRefGoogle Scholar
  40. Redgrave, T. G. and Small, D. M. Quantitation of the transfer of surface phospholipid of chylomicrons to the high-density lipoprotein fraction during the catabolism of chylomicrons in the rat. J. Clin. Invest. 64 (1979) 162–171PubMedCrossRefGoogle Scholar
  41. Rifici, V. A. and Eder, H. A. A hepatocyte receptor for high-density lipoproteins specific for apolipoprotein A-l. J. Biol. Chem. 259 (1984) 13814–13818PubMedGoogle Scholar
  42. Salter, A. M., Saxton, J. and Brindley, D. N. Characterization of the binding of human low-density lipoprotein to primary monolayer cultures of rat hepatocytes. Biochem. J. 240 (1986) 549–557PubMedGoogle Scholar
  43. Salter, A. M., Bugaut, M., Saxton, J., Fisher, S. C. and Brindley, D. N. Effects of preincubation of primary monolayer cultures of rat hepatocytes with low- and high-density lipoproteins on the subsequent binding and metabolism of human low-density lipoprotein. Biochem. J. 247 (1987a) 79–84PubMedGoogle Scholar
  44. Salter, A. M., Fong, B. S., Jimenez, J., Rotstein, L. and Angel, A. Regional variation in high density lipoprotein binding to human adipocyte plasma membranes of massively obese subjects. Eur. J. Clin. Invest. 17 (1987b) 16–22PubMedCrossRefGoogle Scholar
  45. Salter, A. M., Fisher, S. C. and Brindley, D. N. Binding of low-density lipoprotein to monolayer cultures of rat hepatocytes is increased by insulin and decreased by dexamethasone. FEBS Lett. 220 (1987c) 159–162PubMedCrossRefGoogle Scholar
  46. Salter, A. M., Fisher, S. C. and Brindley, D. N. Interactions of triiodothyronine, insulin and dexamethasone on the binding of human LDL to rat hepatocytes in monolayer culture. Atherosclerosis 71 (1988) 77–80PubMedCrossRefGoogle Scholar
  47. Salter, A. M., Saxton, J. and Brindley, D. N. Characterization of the binding of human low-density lipoprotein to cultured rat hepatocytes. Biochem. Soc. Trans. 15 (1987d) 253–254Google Scholar
  48. Schmitz, G., Niemann, R., Brennhausen, B., Krausse, R. and Assman, G. Regulation of high-density lipoprotein receptors in cultured macrophages: role of acyl-CoA: cholesterol acyltransferase. EMBO J. 4 (1985) 2773–2779PubMedGoogle Scholar
  49. Schonfeld, G., Bell, E. and Alpers, D. H. Intestinal apoproteins during fat absorption. J. Clin. Invest. 61 (1978) 1539–1550PubMedCrossRefGoogle Scholar
  50. Scott, J., Pease, R. J., Powell, L. M., Wallis, S. C., McCarthy, B. J., Mahley, R. W., Levy-Wilson, B. and Knott, T. J. Human apolipoprotein-B: complete cDNA sequence and identification of structural domains of the protein. Biochem. Soc. Trans. 15 (1987) 195–199PubMedGoogle Scholar
  51. Sherrill, B. C., Innerarity, T. L. and Mahley, R. W. Rapid hepatic clearance of the canine lipoproteins containing only the E apoprotein by a high affinity receptor. J. Biol. Chem. 255 (1980) 1804–1807PubMedGoogle Scholar
  52. Soltys, P. A., Portman, O. W. and O’Malley, J. L. Binding properties of high-density lipoprotein subfractions and low-density lipoproteins of rabbit hepatocytes. Biochem. Biophys. Acta 713 (1982) 300–314PubMedCrossRefGoogle Scholar
  53. Spady, D. K., Bilheimer, D. W. and Dietschy, J. M. Rates of receptor-dependent and -independent low-density lipoprotein uptake in the hamster. Proc. Natl. Acad. Sci. USA 80 (1983) 3499–3503PubMedCrossRefGoogle Scholar
  54. Spady, D. K., Turley, S. D. and Dietschy, J. M. Receptor-independent low-density lipoprotein transport in rat in vivo. Quantitation, characterization, and metabolic consequences. J. Clin. Invest. 76 (1985) 1113–1122PubMedCrossRefGoogle Scholar
  55. Sparks, C. F., Sparks, J. D., Bolognino, M., Salhanick, A., Strumph, P. S. and Amatruda, J. M. Insulin effects on apolipoprotein synthesis by primary cultures of rat hepatocytes. Metabolism 35 (1986) 1128–1136PubMedCrossRefGoogle Scholar
  56. Stalenhoef, A. F. H., Malloy, M. J., Kane, J. P. and Havel, R. J. Metabolism of apolipoproteins B-48 and B-100 of triglyceride-rich lipoproteins in patients with familial dysbetalipoproteinemia. J. Clin. Invest. 78 (1986) 722–728PubMedCrossRefGoogle Scholar
  57. Swift, L. L., Manowitz, N. R., Dunn, G. D. and LeQuire, V. S. Isolation and characterization of hepatic Golgi lipoproteins from hypercholesterolemic rats. J. Clin. Invest. 66 (1980) 415–425PubMedCrossRefGoogle Scholar
  58. Topping, D. L. and Mayes, P. A. The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism. Biochem. J. 126 (1972) 295–311PubMedGoogle Scholar
  59. Underwood, A. H., Emmett, J. C., Ellis, D., Flynn, S. B., Leeson, P. D., Benson, G. M,, Novelli, R., Pearce, N. J. and Shah, V. P. A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324 (1986) 425–429PubMedCrossRefGoogle Scholar
  60. Walton, K. W., Scott, P. J., Dykes, P. W. and Davies, J. W. L. The significance of alteration in serum lipids in thyroid dysfunction. Part 2 (Alteration in metabolism and turnover of 131I-low density lipoproteins in hypothyroidism and thyrotoxicosis). Clin. Sci. 29 (1965) 217–238PubMedGoogle Scholar
  61. Weisgraber, K. H. and Mahley, R. W. Subfractionation of human high-density lipoproteins by heparin-Sepharose affinity chromatography. J. Lipid Res. 21 (1980) 316–325PubMedGoogle Scholar
  62. Whitton, P. D. and Hems, D. A. Glycogen synthesis in perfused liver of adrenalectomized rats. Biochem. J. 156 (1976) 585–592PubMedGoogle Scholar
  63. Woodside, W. F. and Heimberg, M. Effects of anti-insulin serum, insulin and glucose on output of triglycerides and on ketogenesis by perfused rat liver. J. Biol. Chem. 251 (1976) 13–23PubMedGoogle Scholar
  64. Zilversmit, D. B. Assembly of chylomicrons in the intestine cell. In Dietschy, J. M. Gotto, A. M. and Ontko, J. A. (eds.) Disturbances of Lipid and Lipoprotein Metabolism, American Physiological Society, Bethesda, (1978) 69–81Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • A. M. Salter
    • 1
  • D. N. Brindley
    • 1
  1. 1.Department of BiochemistryUniversity of Nottingham Medical School, Queen’s Medical CentreNottinghamUK

Personalised recommendations