Immunobiology of Sexually Transmitted Disease: Herpes Simplex Virus

  • M. J. Hall
  • D. J. Jeffries
Part of the Immunology and Medicine book series (IMME, volume 9)


Herpes simplex is an enveloped DNA virus able to cause both acute and recurrent diseases in man. There are two types, namely HSV-1 and HSV-2, but the latter is most often associated with genital lesions. The frequency of isolation of HSV-2 from genital episodes varies between investigators and may range from over 90% to as low as 60% 1. It is evident, therefore, that HSV-1 is also a major aetiological agent in genital herpes infections and both types will be considered in this chapter.


Herpes Simplex Virus Herpes Simplex Virus Type Herpes Virus Genital Herpes Human Herpesvirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nahmias, A. J., Dannenbarger, J., Wickliffe, C. and Muther, J. (1981). Clinical aspects of infection with herpes simplex virus 1 and 2. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplininary Perspective, pp. 3–9. ( NY: Elsevier Press )Google Scholar
  2. 2.
    Rawls, W. E. and Campione-Piccardo, J. (1981). Epidemiology of herpes simplex type 1 and 2 infections. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 137–152. ( NY: Elsevier Press )Google Scholar
  3. 3.
    Baringer, J. R. (1981). Latency of herpes simplex and varicella zoster viruses in the nervous system. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 202–205. ( NY: Elsevier Press )Google Scholar
  4. 4.
    Wildy, P., Field, H. J. and Nash, A. A. (1982). Classical herpes latency revisited. In Mahy, B., Minson, A. C. and Darby, G. K. (eds.).Symposium 33, Society for General Microbiology, pp. 133–168. ( NY: Cambridge University Press )Google Scholar
  5. 5.
    Mims, C. A. (1964). Aspects of the pathogenesis of viral disease.Bacteriol. Rev,28, 30–71PubMedGoogle Scholar
  6. 6.
    Morahan, P. S., Kern, E. R. and Glasgow, L. A. (1977). Immunomodulator-induced resistance against herpes simplex virus.Proc. Soc. Exp. Biol. Med,154, 615–20PubMedGoogle Scholar
  7. 7.
    Morahan, P. S., Morse, S. S. and McGeorge, M. E. (1980). Macrophage extrinsic antiviral activity during herpes simplex virus infection.J. Gen. Virol,46, 291–300PubMedCrossRefGoogle Scholar
  8. 8.
    Morahan, P. S. (1984). Interactions of herpesviruses with mononuclear phagocytes. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 71–89. ( Florida: CRC Press )Google Scholar
  9. 9.
    Morahan, P. S., Connor, J. R. and Leary, K. R. (1985). Viruses and the versatile macrophage.Br. Med. Bull,41, 15–21PubMedGoogle Scholar
  10. 10.
    Bianco, C. and Edelson, P. J. (1978). Plasma membrane expression of macrophage differentiation. In Lerner, R. A. (ed.).Molecular Basis of Cell-Cell Interaction (Birth Defects) vol.14( 2 ), pp. 119–124. ( New York: Alan R. Liss )Google Scholar
  11. 11.
    Rager-Zisman, B., Kunkel, M., Tanaka, Y. and Bloom, B. R. (1982). Role of macrophage oxidative metabolism in resistance to vesicular stomatitis virus.Infect. Immun,36, 1229–37PubMedGoogle Scholar
  12. 12.
    Stohlman, S. A., Woodward, J. G. and Frelinger, J. A. (1982). Macrophage antiviral activity: extrinsic versus intrinsic activity.Infect. Immun,36, 672–7PubMedGoogle Scholar
  13. 13.
    Hayashi, K., Kurata, T., Morishima, T. and Nassery, T. (1980). Analysis of the inhibitory effect of peritoneal macrophages on the spread of herpes simplex virus.Infect. Immun,28. 350 - 8PubMedGoogle Scholar
  14. 14.
    Wildy, P., Gell, P. G. H., Rhodes, J. and Newton, A. (1982). Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?Infect. Immun,37, 40–5PubMedGoogle Scholar
  15. 15.
    Johnson, R. T. (1965). The pathogenesis of herpes virus encephalitis II. A cellular basis for the development of resistance with age.J. Exp. Med,120, 359–74CrossRefGoogle Scholar
  16. 16.
    Lopez, C. (1984). Natural resistance mechanisms against herpes virus in health and disease. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 45–70. ( Florida: CRC Press )Google Scholar
  17. 17.
    Lopez, C. and Dudas, G. (1979). Replication of herpes simplex virus type 1 in macrophages from resistant and susceptible mice.Infect. Immun,23, 432–7PubMedGoogle Scholar
  18. 18.
    Armerding, D., Mayer, P., Scriba, M., Hren, A. and Rossiter, H. (1981). In-vivo modulation of macrophage functions by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains.Immunobiology,160, 217 - 27PubMedGoogle Scholar
  19. 19.
    Mintz, L., Drew, W. L., Hoo, R. and Finley, T. N. (1980). Age-dependent resistance of human alveolar macrophages to herpes simplex virus.Infect. Immun,28, 417–20PubMedGoogle Scholar
  20. 20.
    Morse, S. S. and Morahan, P. S. (1981). Activated macrophages mediate interferon- independent inhibition of herpes simplex virus.Cell. Immunol,58, 72–84PubMedCrossRefGoogle Scholar
  21. 21.
    Stevens, J. G. and Cook, M. L. (1971). Restriction of herpes simplex virus by macrophages. An analysis of the cell-virus interaction.J. Exp. Med,133, 19–38PubMedCrossRefGoogle Scholar
  22. 22.
    Rinaldo, C. R., Jr., Richter, B. S., Black, P. H. and Hirsch, M. S. (1979). Persistent infection of human lymphoid and myeloid cell lines with herpes simplex virus.Infect. Immun,25, 521–5PubMedGoogle Scholar
  23. 23.
    Frank, U., Schindling, B., Lindermann, J. and Falke, D. (1978). Multiplication of herpes simplex virus types 1 and 2 in macrophages of NMRI and C57/BL mice.Acta Virol,22, 193–202PubMedGoogle Scholar
  24. 24.
    Daniels, C. A., Kleinerman, E. S. and Snyderman, R. (1978). Abortive and productive infections of human mononuclear phagocytes by type 1 herpes simplex virus.Am. J. Pathol,91, 119–29PubMedGoogle Scholar
  25. 25.
    Johnson, R. B., Jr. (1978). Oxygen metabolism and the microbicidal activity of macrophages.Fed. Proc,37, 2759–64Google Scholar
  26. 26.
    Sethi, K. K. (1983). Contribution of macrophage arginase in the intrinsic restriction of herpes simplex virus replication in permissive macrophage cultures induced by gamma- interferon containing products of activated spleen cells.Immunobiology,165, 459–74PubMedGoogle Scholar
  27. 27.
    Stohlman, S. A., Woodward, J. G. and Frelinger, J. A. (1982). Macrophage antiviral activity: extrinsic versus intrinsic activity.Infect. Immun,36, 672–7PubMedGoogle Scholar
  28. 28.
    Linnavuori, K. and Hovi, T. (1983). Restricted replication of herpes simplex virus in human monocyte cultures: role of interferon. Virology,130, 1–9PubMedCrossRefGoogle Scholar
  29. 29.
    Isaacs, A. and Lindenmann, J., (1956). Virus interference. I. The interferons.Proc. R. Soc. Lond. (Ser. B.),147, 258–67CrossRefGoogle Scholar
  30. Zawatzky, R., Gresser, I., DeMaeyer, E. and Kirchner, H. (1982). The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1.J. Infect. Dis,146, 405–10Google Scholar
  31. 31.
    Gresser, I., Tovey, M. G., Maury, C. and Bandu, M.-T. (1976). Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. II. Studies with herpes simplex virus, Maloney sarcoma, vesicular stomatitis, Newcastle disease and influenza viruses.J. Exp. Med,144, 1316–23PubMedCrossRefGoogle Scholar
  32. 32.
    Hirt, H. M., Becker, H. and Kirchner, H. (1978). Induction of interferon production in mouse spleen cell cultures by Corynebacteriumparvum. Cell. Immunol.,38, 168–75Google Scholar
  33. 33.
    Barinskii, I. F., Popova, O. M., Konstantinova, I. V., Grebeniuk, V. N. and Kuznetsov, V. P. (1985). Indices of alpha-interferon and of lymphocyte natural killer activity in genital herpes and the effect on them of specific vaccination therapy and interferon therapy.Vopr. Virusol,30, 340–3PubMedGoogle Scholar
  34. Panet, A., Gloger, I. and Falk, H. (1985). Mechanisms of herpes simplex virus inhibition by interferon. In Kirchner, H. and Schellekens, H. (eds.).The Biology of the Interferon System 1984, pp. 325–331. (Elsevier Science Publishers)Google Scholar
  35. 35.
    Haller, O. and Wigzell, H. (1977). Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent.J. Immunol,118, 1503–6PubMedGoogle Scholar
  36. 36.
    Lopez, C. (1978). Immunological nature of genetic resistance of mice to herpes simplex virus-type 1 infection. In de The, G., Henle, W. and Rapp, F. (eds.).Oncogenesis and Herpes Viruses, Vol.3, pp. 775–81. ( Lyon: WHO )Google Scholar
  37. 37.
    Schneweis, K. E., Olbrick, M., Saffig, V. and Scholz, R. (1982). Effects of genetic resistance against herpes simplex virus in vaginally infected mice.Med. Microbiol. Immunol,171, 161–9PubMedCrossRefGoogle Scholar
  38. 38.
    Armerding, D., Simon, M. M., Hammerling, G. J. and Rossiter, H. (1981). Function, target cell preference and cell surface characteristics of herpes simplex virus type 2 induced non- antigen specific killer cells.Immunobiology,158, 347–68PubMedGoogle Scholar
  39. 39.
    El-Daher, N. and Betts, R. F. (1985). New observations regarding killing of fibroblasts infected with herpes simplex virus: co-operation between elutable factor and peripheral mononuclear cells.J. Inf. Dis,152, 1197–205CrossRefGoogle Scholar
  40. 40.
    Rouse, B. T. and Lopez, C. (1984). Strategies for immune intervention against herpes simplex virus. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 145–155. ( Florida: CRC Press )Google Scholar
  41. 41.
    Gidlund, M. Orn, A., Wigzell, H., Senik, A. and Gresser, I. (1978). Enhanced NK cell activity in mice injected with interferon and interferon inducers.Nature(Lond.),273, 759–61CrossRefGoogle Scholar
  42. 42.
    Djeu, J. Y., Heinbaugh, J. A., Holden, H. T. and Herberman, R. B. (1979). Augmentation of mouse natural killer cell activity by interferon inducers.J. Immunol,122, 175–81PubMedGoogle Scholar
  43. 43.
    Ullberg, M. and Jondal, M. (1981). Recycling and target-binding capacity of human natural killer cells.J. Exp. Med, 153, 615–28PubMedCrossRefGoogle Scholar
  44. 44.
    Kohl, S., Loo, L. S., Schmalstieg, F. S. and Anderson, D. C. (1986). The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150, 95 in humans is associated with defective antibody dependent cellular cytotoxicity in vitro and defective protection against herpes-simplex virus infection in vivo.J. Immunol,137, 1688–94PubMedGoogle Scholar
  45. 45.
    Borysiewicz, L. K., Graham, S. and Sissons, J. G. (1986). Human natural killer cell lysis of virus-infected cells. Relationship to expression of the transferrin receptor.Eur. J. Immunol,16, 405–11PubMedCrossRefGoogle Scholar
  46. 46.
    Hall, M. J. and Katrak, K. (1986). The quest for a herpes simplex virus vaccine: background and recent developments.Vaccine,4, 138–50PubMedCrossRefGoogle Scholar
  47. 47.
    Shore, S. L. and Feorino, P. M. (1981). Immunology of primary herpes virus infections in humans. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 267–288. ( NY: Elsevier Pres )Google Scholar
  48. 48.
    Norrild, B., Emmertsen, H., Krebs, H. J. and Pedersen, B. (1984). Antibody-dependent immune mechanisms and herpes simplex virus infections. In Rouse, B. T., and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 91–105. ( Florida: CRC Press )Google Scholar
  49. 49.
    Sundquist, V. A., Linde, A. and Wahren, B. (1984). Virus-specific immunoglobin G subclasses in herpes simplex and varicella-zoster virus infections.J. Clin. Microbiol,20, 94–8Google Scholar
  50. 50.
    Bernstein, D. I., Lovett, M. A. and Bryson, Y. J. (1984). Serological analysis of first-episode non-primary genital herpes simplex virus infection. Presence of type 2 antibody in acute serum samples.Am. J. Med,77, 1055–60PubMedCrossRefGoogle Scholar
  51. 51.
    Devillechabrolle, A., Hugnes-Dorin, F., Fortier, B., Catalan, F. and Huraux, J. M. (1985). Prevelance of serum antibodies to herpes simplex virus types 1 and 2: application of an ELISA technique to 100 cases of anogenital herpes.Sex Transm. Dis,12, 40–3PubMedCrossRefGoogle Scholar
  52. 52.
    Courtney, R. J. (1984). Virus-specific components of herpes simplex virus involved in the immune response. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 33–44. ( Florida: CRC Press )Google Scholar
  53. 53.
    Balachandran, N., Bacchetti, S. and Rawls, W. E. (1982). Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2.Infect. Immun,37, 1132–7PubMedGoogle Scholar
  54. 54.
    Roberts, P. L., Duncan, B. E., Raybould, T. J. G. and Watson, D. H. (1985). Purification of Herpes virus glycoproteins B and C using monoclonal antibodies and their ability to protect mice against lethal challenge - hybridoma generation, monoclonal antibody production and vaccine purification.J. Gen. Virol,66, 1073–85PubMedCrossRefGoogle Scholar
  55. 55.
    Lee, F. K., Coleman, R. M., Pereira, L., Bailey, P. D., Tatsuno, M. and Nahmias, A. J. (1985). Detection of herpes simplex virus type 2-specific antibody with glycoprotein G.J. Clin. Microbiol,22, 641–4PubMedGoogle Scholar
  56. 56.
    Eberle, R., Mou, S. W. and Zaia, J. A. (1984). Polypeptide specificity of the early antibody response following primary and recurrent genital herpes simplex virus type 2 infections.J. Gen. Virol,65, 1839–43PubMedCrossRefGoogle Scholar
  57. 57.
    Eberle, R., Mou, S. W. and Zaia, J. A. (1985). The immune response to herpes simplex virus: comparison of the specificity and relative titres of serum antibodies directed against viral polypeptides following primary herpes simplex type 1 infections.J. Med. Virol,16, 147–62PubMedCrossRefGoogle Scholar
  58. 58.
    Ashley, R., Benedetti, J. and Corey, L. (1985). Humoral immune response to HSV-1 and HSV-2 viral proteins in patients with primary genital herpes.J. Med. Virol,17, 153 - 66PubMedCrossRefGoogle Scholar
  59. 59.
    Lum, L. G., Orcutt-Thordarson, N. and Seigneuret, M. C. (1985). Regulatory roles of human OKT4/ OKT8 subsets in polyclonal immunoglobulin production induced by herpes simplex type 1 virus.Immunobiology,169, 319–29PubMedGoogle Scholar
  60. 60.
    McDermott, M. R., Smiley, J. R., Leslie, P., Brais, J., Rudzroga, H. E. and Bienenstock, J. (1984). Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex type 2.J. Virol,51, 747–53PubMedGoogle Scholar
  61. 61.
    Merriman, H., Woods, S., Winter, C., Fahnlander, A. and Corey, L. (1984). Secretory IgA antibody in cervicovaginal secretions from women with genital infection due to herpes simplex virus.Inf. Dis,149, 505–10CrossRefGoogle Scholar
  62. 62.
    Lagace-Simard, J., Portnoy, J. D. and Wainberg, M. A. (1986). High levels of IgE in patients suffering from frequent recurrent herpes simplex lesions. J. Allergy Clin. Immunol.,77, 582 - 5PubMedCrossRefGoogle Scholar
  63. 63.
    Pass, R. F., Whitley, R. J., Whelchel, J. D., Diethelm, A. G., Reynolds, D. W. and Alford, C. (1980). Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation.J. Inf. Dis,140, 487–92CrossRefGoogle Scholar
  64. 64.
    Kohl, S. (1984). The immune response of the neonate to herpes simplex virus infection. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 121–130. ( Florida: CRC Press )Google Scholar
  65. 65.
    Kohl, and Loo, L. S. (1982). Protection of neonatal mice against herpes simplex virus infection. Probable in vivo antibody-dependent cellular cytotoxicity. J. Immunol.,129, 370–6Google Scholar
  66. 66.
    Gonik, B., Loo, L. S., Bigelow, R. and Kohl, S. (1985). Influence of menstrual cycle variations on natural killer cytotoxicity and antibody dependent cellular cytotoxicity to cells infected with herpes simplex virus.J. Reprod. Med,30, 493–6PubMedGoogle Scholar
  67. 67.
    Gonik, B., Loo, L. S., Bigelow, R. and Kohl, S. (1984). Influence of naproxen therapy on natural killer cytotoxicity and antibody-dependent cellular cytotoxicity against cells infected with herpes simplex virus.J. Reprod. Med,29, 722–6PubMedGoogle Scholar
  68. 68.
    Oldstone, M. B. A. (1981). Lysis of human cells infected with a variety of RNA and DNA viruses is dependent on the alternative complement pathway and specific divalent antibody. In, Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpes Viruses. An Interdisciplinary Perspective, pp. 326–29. ( NY: Elsevier Press )Google Scholar
  69. 69.
    Smiley, M. L., Hoxie, J. A. and Friedman, H. M. (1985). Herpes simplex virus type 1 infection of endothelial, epithelial and fibroblast cells induces a receptor for C3b.J. Immunol,134, 2673–8PubMedGoogle Scholar
  70. 70.
    Rouse, B. T. (1984). Cell-mediated immune mechanisms. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 107–120. ( Florida: CRC Press )Google Scholar
  71. 71.
    Schmid, D. S., Larson, H. and Rouse, B. T. (1981). The role of accessory cells and T-cell growth factor in induction of cytotoxic T-lymphocytes against herpes simplex virus antigens.Immunology,44, 755–63PubMedGoogle Scholar
  72. 72.
    Ferrar, W. L., Johnson, H. M. and Ferrar, J. J. (1981). Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2.J. Immunol,126, 1120–5Google Scholar
  73. 73.
    Schmid, D. S., Larsen, H. S. and Rouse, B. T. (1982). Role of la antigen expression and secretory function of accessory cells in induction of cytotoxic T lymphocyte responses against herpes simplex virus.Infect. Immun,37, 1138–47PubMedGoogle Scholar
  74. 74.
    Yasukawa, M. and Zarling, J. M. (1985). Human cytotoxic T-cell clones directed against herpes simplex virus infected cells. Ill Analysis of viral glycoproteins recognised by CTL clones by using recombinant herpes simplex virus.J. Immunol,134, 2679–82PubMedGoogle Scholar
  75. 75.
    Zarling, J. M., Moran, P. A., Burke, R. L., Pachl, C., Berman, P. W. and Lasky, L. A. (1986). Human cytotoxic T-cell clones directed against herpes simplex virus-infected cells. IV. Recognition and activation by cloned glycoproteins gB and gD.J. Immunol,136, 4669–73PubMedGoogle Scholar
  76. 76.
    Yasukawa, M. and Zarling, J. M. (1984). Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens.J. Immunol,133, 422–7PubMedGoogle Scholar
  77. 77.
    Wainberg, M. A., Portnoy, J. D., Clecner, B., Hubschman, S., Lagace-Simard, J., Rabinovitch, N., Remer, Z. and Mendelson, J. (1985). Viral inhibition of lymphocyte proliferation responsiveness in patients suffering from recurrent lesions caused by herpes simplex virus.J. Inf. Dis,152, 441–8CrossRefGoogle Scholar
  78. 78.
    Andervont, H. B. (1929). Activity of herpetic virus in mice. J. Infect. Dis.,44, 383–93CrossRefGoogle Scholar
  79. 79.
    Nahmias, A. J. and Visintine, A. M. (1976). Herpes simplex. In Remington, J. S. and Klein, J. O. (eds.).Infectious Diseases of the Foetus and Newborn Infant, p. 156. ( Philadelphia: W. B. Saunders )Google Scholar
  80. 80.
    Yeager, A. S., Arvin, A. M., Urbani, L. J. and Kemp, L. A. (1980). Relationship of antibody to outcome in neonatal herpes simplex virus infection.Infect. Immun,29, 532–8PubMedGoogle Scholar
  81. 81.
    Whitley, R. J., Nahmias, A. J., Visintine, A. M., Fleming, C. L. and Alford, C. A. (1980). The natural history of herpes simplex virus infections of mother and newborn.Pediatrics,66, 489–94PubMedGoogle Scholar
  82. 82.
    Sullender, W. M., Miller, J. L., Yasukawa, L. L., Bradley, J. S., Black, S. B., Yeager, A. S., and Arvin, A. M. (1987). Humoral and cell mediated immunity in neonates with herpes simplex virus infection.J. Inf. Dis,155, 28–37CrossRefGoogle Scholar
  83. 83.
    Hayward, A., Herberger, M. and Corey, L. (1986). IgG subclass of anti-HSV antibodies following neonatal HSV infections.Eur. J. Pediatr,145, 250–1PubMedCrossRefGoogle Scholar
  84. 84.
    Baron, S., Georgiades, J. and Worthington, M. (1981). Potential for post exposure prophylaxis of neonatal herpes using passive antibody. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.). The Human Herpesviruses.An Interdisciplinary Perspective, pp. 491–495. ( NY: Elsevier Press )Google Scholar
  85. 85.
    Pass, R. F., Dworsky, M. E., Whitley, R. J., August, A. M., Stagno, S. and Alford, C. A., Jr. (1981). Specific lymphocyte blastogenic responses in children with cytomegalovirus and herpes simplex virus infections acquired early in infancy.Infect. Immun,34, 166–70PubMedGoogle Scholar
  86. 86.
    Leibson, P. J., Hunter-Laszlo, M., Douvas, G. S. and Hayward, A. R. (1986). Impaired neonatal natural killer-cell activity to herpes simplex virus: decreased inhibition of viral replication and altered response to lymphokines.J. Clin. Immunol,6, 216–24PubMedCrossRefGoogle Scholar
  87. 87.
    Frazier, J. P., Kohl, S., Pickering, L. K. and Loo, L. S. (1982). The effect of route of delivery on neonatal natural killer cytotoxicity and antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells.Pediatr. Res,16, 558–60PubMedCrossRefGoogle Scholar
  88. 88.
    Miller, M. E. (1978). Host Defences in the Human Neonate. ( NY: Grune and Stratton )Google Scholar
  89. 89.
    Blyth, W. A. and Hill, T. J. (1984). Establishment, maintenance and control of herpes simplex virus latency. In Rouse, B. T., and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 10–32. ( Florida: CRC Press )Google Scholar
  90. 90.
    Klein, R. J. (1985). Initiation and maintenance of latent herpes virus infections: the paradox of perpetual immobility and continuous movement.Rev. Inf. Dis,7, 21–30CrossRefGoogle Scholar
  91. 91.
    Openshaw, H., Tsuyoshi, S., Wohlenberg, C. and Notkins, A. L. (1981). The role of immunity in latency and reactivation of herpes simplex virus. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 289–296. ( NY: Elsevier Press )Google Scholar
  92. 92.
    Yasumoto, S., Okabe, N. and Mori, R. (1986). Role of epidermal Langerhans cells in resistance to herpes simplex virus infection.Arch. Virol,90, 261–71PubMedCrossRefGoogle Scholar
  93. 93.
    Wrzos, H. and Rapp, H. (1985). Experimental model for activation of genital herpes simplex virus. J. Inf. Dis.,151, 349–54CrossRefGoogle Scholar
  94. 94.
    Scriba, M. (1976). Recurrent genital herpes simplex virus (HSV) infection in guinea pigs.Med. Microbiol Immunol, 162, 201–8PubMedCrossRefGoogle Scholar
  95. 95.
    Baker, D. A. and Thomas, J. (1985). The effect of prostaglandin E2 on the initial immune response to herpes simplex virus infection.Am. J. Obstet. Gynecol,151, 586–90PubMedGoogle Scholar
  96. 96.
    Merigan, T. C. (1981). Immunosuppression and herpes viruses. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.). The Human Herpesviruses.An Interdisciplinary Perspective, pp. 309–316. ( NY: Elsevier Press )Google Scholar
  97. 97.
    Sheridan, J. F., Beck, M., Aurelian, L. and Radowsky, M. (1985). Immunity to herpes simplex virus: virus reactivation modulates lymphokine activity.J. Inf. Dis,152, 449–56CrossRefGoogle Scholar
  98. 98.
    Rola-Pleszczynski, M. and Lieu, H. (1984). Natural cytotoxic cell activity linked to time of recurrence of herpes labialis.Clin. Exp. Immunol,55, 224–8PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • M. J. Hall
  • D. J. Jeffries

There are no affiliations available

Personalised recommendations