Advertisement

Fat Digestion and Solubilisation

  • B. Borgström
Chapter

Abstract

The main outlines of the process of fat digestion and absorption have been fairly well established: after absorption from the intestine dietary triglyceride appears in the milky chyle1 as triglyceride, bile2 and pancreatic juice3 normally being necessary for this process. What takes place in between, however, has long been the subject of great controversy and the details are not yet fully established4.

Keywords

Bile Acid Bile Salt Pancreatic Lipase Intestinal Content Lipid Digestion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Munk, I. (1900). Zur Frage des Fettresorption. Z. Physiol 14, 153–6Google Scholar
  2. 2.
    Bernard, C. (1849). Recherches sur les usages du sac pancreatique dans la digestion. Acad. Sci., 28, 249–85Google Scholar
  3. 3.
    Dastre, A. (1890). Recherches sur la bile. Arch. Physiol., 5 sereie, 2, 315–30Google Scholar
  4. 4.
    Borgstrom, B. and Patton, J.S. (1988). Luminal events in gastrointestinal lipid digestion. Handbook of Physiology In Press)Google Scholar
  5. 5.
    Hamosh, M. (1986). Lingual lipase. Gastroenterology 90, 1290–7PubMedGoogle Scholar
  6. 6.
    Lindstrom, M.B., Sternby, B. and Borgstrom, B. (1988). Concerted action of human carboxyl ester lipase and pancreatic lipase during lipid digestion in vitro: importance of the physicochemical state of the substrate. Biochim. Biophys Acta 959, 178–184PubMedGoogle Scholar
  7. 7.
    Hernell, O., Blackberg, L., Fredrikzon, B. and Olivecrona, T. (1981). Bile salt stimulated lipase in human milk and lipid digestion during the neonatal period. In Lebenthal, E. (ed.) Textbook of Gastroenterology and Nutrition of Infancy pp. 465–471, (New York: Raven Press)Google Scholar
  8. 8.
    Carey, M.C. (1982). The enterohepatic circulation. In Arias, I., Popper, H., Schachter, D. and Schafritz, D.A. (eds.) The Liver: Biology and Pathobiology) pp. 429–465, (New York: Raven Press)Google Scholar
  9. 9.
    Mazer, N.A., Carey, M.C., Kwasnic, R.F. and Benedek, G.B. (1979). Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape and thermodynamics of bile salt micelles. Biochemistry 18, 3064–75PubMedCrossRefGoogle Scholar
  10. 10.
    Lindstrom, M., Ljusberg-Wahren, H., Larsson, K. and Borgstrom, B. (1981). Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 16, 749–54PubMedCrossRefGoogle Scholar
  11. 11.
    Carey, M.C., Small, D.M. and Bliss, C.M. (1983). Lipid digestion and absorption. Annu. Rev. Physiol 45, 651–77PubMedCrossRefGoogle Scholar
  12. 12.
    Borgstrom, B. (1985). The micellar hypothesis of fat absorption: must it be revisited? Scand. Gastroenterol 20, 389–94CrossRefGoogle Scholar
  13. 13.
    Thomson, A.B.R. and Dietschy, J.M. (1981). In Johnson, C.R. (ed.) Physiology of the Gastrointestinal Tract. pp. 1147–220, (New York: Raven Press)Google Scholar
  14. 14.
    Volhard, F. (1901). Uber das fettspaltende Ferment des Magens. Z. Klin. Med. 42, 414Google Scholar
  15. 15.
    Borgstrom, B., Dalqvist, A., Lundh, G. and Sjovall, J. (1957). Studies of intestinal digestion and absorption in the human. Clin. Invest 36, 1521–36CrossRefGoogle Scholar
  16. 16.
    Hamosh, M. (1981). Oral lipases and lipid digestion during the neonatal period. In Lebenthal, E. (ed.) Textbook of Gastroenterology and Nutrition in Infancy pp. 445–63 (New York: Raven Press)Google Scholar
  17. 17.
    Otterby, D.E., Ramsey, H.A. and Wise, G.H. (1964). Lipolysis of milk fat by pregastric esterase in the abdomen of the calf. Dairy Set 47, 993–7CrossRefGoogle Scholar
  18. 18.
    Cohen, M., Morgan, R.G.H. and Hofmann, A.F. (1971). Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60, 1–15PubMedGoogle Scholar
  19. 19.
    Hamosh, M. (1984). Lingual lipase. In Borgstrom, B. and Brockman, H.L. (eds.) Lipases pp. 49–82. (Amsterdam: Elsevier)Google Scholar
  20. 20.
    Hamosh, M. (1978). Rat lingual lipase: factors affecting enzyme activity and secretion. Am. J. Physiol 235, E416–E421PubMedGoogle Scholar
  21. 21.
    Hamosh, M. and Burns, W.A. (1977). Lipolytic activity of human lingual glands (Ebner). Lab. Invest. 37, 603–8PubMedGoogle Scholar
  22. 22.
    Docherty, A.J.P., Bodmer, M.W., Angal, S., Verger, R., Riviere, C., Lowe, P.A., Lyons, A., Emtage, J.S. and Harris, T.J.R. (1985). Molecular cloning and nucleotide sequence of rat lingual lipase cDNA. Nucl. Acids Res. 13, 1891–903PubMedCrossRefGoogle Scholar
  23. 23.
    Bernback, S., Hernell, O. and Blackberg, L. (1985). Purification and molecular characterisation of bovine pregastric lipase. Eur. J. Biochem. 148, 233–8PubMedCrossRefGoogle Scholar
  24. 24.
    Gagouri, Y. Pieroni, G., Riviere, C., Sauniere, J.-F., Lowe, P.A., Sarda, L. and Verger, R. (1986). Kinetic assay of human gastric lipase on short-and long-chain triacylglycerol emulsions. Gastroenterology 91, 919–25Google Scholar
  25. 25.
    Gargouri, Y., Pieroni, G. Lowe, P.A., Sarda, L. and Verger, R. (1986). Human gastric lipase. The effect of amphiphiles. Eur. J. Biochem. 156, 305–10PubMedCrossRefGoogle Scholar
  26. 26.
    Verger, R., De Haas, G.H., Sarda, L. and Desnuelle, P. (1969). Purification from porcine pancreas of two molecular species with lipase activity. Biochim. Biophys. Acta 188, 272–82PubMedGoogle Scholar
  27. 27.
    De Caro, J., Boudouard, M., Bonicel, J., Goudoni, A., Desnuelle, P. and Rovery, M. (1981). Porcine pancreatic lipase. Completion of the primary structure. Biochim. Biophys. Acta 671, 129–38PubMedGoogle Scholar
  28. 28.
    Morgan, R.G.H, Barrowman, J. and Borgstrom, B. (1969). The effect of sodium taurodeoxycholate and pH on the gel filtration behaviour of rat pancreatic protein and lipases. Biochim Biophys. Acta 175, 65–75PubMedGoogle Scholar
  29. 29.
    Maylie, M.F., Charles, M., Gache, C. and Desnuelle, P. (1971). Isolation and partial purification of a pancreatic colipase. Biochim. Biophys. Acta 229, 286–9PubMedGoogle Scholar
  30. 30.
    Patton, J.S., Albertsson, P.-A., Erlanson, C. and Borgstrom, B. (1973). Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography. J Biol Chem. 253, 4195–202Google Scholar
  31. 31.
    Borgstrom, B. (1982). The temperature-dependent interfacial inactivation of porcine pancreatic lipase. Effect of colipase and bile salts. Biochim. Biophys. Acta 712, 490–7PubMedGoogle Scholar
  32. 32.
    Borgstrom, B. (1975). On the interactions between pancreatic lipase and colipase and the substrate and the importance of bile salts. J. Lipid Res. 16, 411–17Google Scholar
  33. 33.
    Vandermeers, A., Vandermeers, M.C., Rathe, J. and Christophe, J. (1975). Effect of colipase on adsorption and activity of rat pancreatic lipase on emulsified tributyrine in the presence of bile salts. FEBS Lett. 49, 334–7PubMedCrossRefGoogle Scholar
  34. 34.
    Momsen, W.E. and Brockman, H.L. (1976). Effect of colipase and taurodeoxycholate on the catalytic and physical properties of liapse B at an oil-water interface. Biol Chem. 251, 378–53Google Scholar
  35. 35.
    Borgstrom, B. and Erlanson, C. (1971). Pancreatic juice colipase: Physiological importance. Biochim. Biophys. Acta 242, 509–13PubMedGoogle Scholar
  36. 36.
    Borgstrom, B. and Erlanson-Albertsson, C. (1984). Pancreatic colipase. In Borgstrom, B. and Brockman, H.L. (eds.) Lipases pp. 151–83, (Amsterdam: Elsevier)Google Scholar
  37. 37.
    Patton, J.S. (1981). Gastrointestinal digestion. In Johnson, L.R. (ed.) Physiology of the Gastrointestinal Tract, pp. 1123–46. (New York: Raven Press)Google Scholar
  38. 38.
    Verger, R. (1984). Pancreatic lipase. In Borgstròm, B. and Brockman, H.L. (eds.) Lipases, pp. 83–150, (Amsterdam: Elsevier)Google Scholar
  39. 39.
    Erlanson-Albertsson, C. and Åkerlund, H.-E (1982). Conformational change in pancreatic lipase induced by colipase. FEBS Lett. 155, 38–42CrossRefGoogle Scholar
  40. 40.
    Vandermeers, A., Vandermeers-Piret, M.C., Rathe, J. and Christophe, J. (1974). On human pancreatic triacylglycerol lipase: isolation and some properties. Biochim. Biophys. Acta 370, 257–68PubMedGoogle Scholar
  41. 41.
    Borgstròm, B. and Hildebrand, H. (1975). Lipase and colipase activities of human small intestinal contents after a liquid test meal. Scand. J. Gastroenterol. 10, 585–91Google Scholar
  42. 42.
    Borgstròm, B., Wieloch, T. and Erlanson-Albertsson, C. (1979). Evidence for a pancreatic pro-colipase and its activation by trypsin. FEBS Lett. 108, 407–10PubMedCrossRefGoogle Scholar
  43. 43.
    Charles, M., Erlanson, C., Bianchetta, J., Joffre, J., Guidoni, A. and Rovery, M. (1974). The primary structure of porcine colipase II. I. The amino acid sequence. Biochim. Biophys. Acta 359, 186–97PubMedGoogle Scholar
  44. 44.
    Erlanson, C., Charles, M., Astier, M. and Desnuelle, P. (1974). The primary structure of porcine colipase II. II The disulphide bridges. Biochim. Biophys. Acta 359, 198–203PubMedGoogle Scholar
  45. 45.
    Larsson, A. and Erlanson-Albertsson, C. (1981). The identity of two forms of activated colipase from porcine pancreas. Biochim. Biophys. Acta 664, 538–48PubMedGoogle Scholar
  46. 46.
    Gaskin, K.J., Durie, P.R., Hill, R.E., Lee, C.M. and Forstner, G.G. (1982). Colipase and maximally activated pancreatic lipase in normal subjects and patients with steatorrhea. . Clin. Invest. 69, 427–34CrossRefGoogle Scholar
  47. 47.
    Gaskin, K.J„ Durie, P.R., Lee, L., Hill, R. and Forstner, G.G. (1984). Colipase and lipase secretion in childhood-onset pancreatic insufficiency. Delineation of patients with steatorrhea secondary to relative colipase deficiency. Gastroenterology 86, 1–7PubMedGoogle Scholar
  48. 48.
    Olivecrona, T. and Bengtsson, G. 1984). In Borgstròm, B. and Brockman, H.L. (eds.) Lipases pp. 205–62, (Amsterdam: Elsevier)Google Scholar
  49. 49.
    Freed, L.M., York, C.M., Hamosh, M., Sturman, J.A. and Hamosh, P. (1986). Bile salt-stimulated lipase in non-primate milk: Longitudinal variation and lipase characteristics in cat and dog milk. Biochim. Biophys. Acta 878, 209–15PubMedGoogle Scholar
  50. 50.
    Lombardo, D., Fauvel, J. and Guy, O. (1980). Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. Biochim. Biophys. Acta 611, 136–46PubMedGoogle Scholar
  51. 51.
    Hernell, O., Blàckberg, L. and Bernbàck, S. (1987). Milk lipase and in vivo lipolysis. In Lònnerdahl, B. and Atkinson, S. (eds.) Protein and N-protein Nitrogen in Human Milk (CRC Press) (In press)Google Scholar
  52. 52.
    Bhat, S.G. and Brockman, H.L. (1982). The role of cholesterol ester hydrolysis and synthesis in cholesterol transport across the rat intestinal mucosa membrane; a new concept. Biochem. Biophys. Res. Commun. 109, 486–92PubMedCrossRefGoogle Scholar
  53. 53.
    Watt, S.M. and Simmonds, W.J. (1981). The effect of pancreatic diversion on lymphatic absorption and esterification of cholesterol in the rat. J. Lipid Res. 22, 157–65PubMedGoogle Scholar
  54. 54.
    Lombardo, D., Campese, D., Multigner, L., Lafont, H. and De Caro, A. (1983). On the probable involvement on arginine residues in the bile salt-binding site of human pancreatic carboxyl ester hydrolase. Eur. J. Biochem. 133, 327–33PubMedCrossRefGoogle Scholar
  55. 55.
    Blàckberg, L. and Hernell, O. (1981). The bile salt-stimulated lipase in human milk: purification and characterisation. Eur. J. Biochem. 116, 221–25PubMedCrossRefGoogle Scholar
  56. 56.
    Erlanson-Albertsson, C. (1986). Pancreatic carboxyl ester hydrolyseand non-enzymatic constituents of pancreatic juice. In Desnuelle, P., Sjòstròm, H. and Norén, O. (eds.) Molecular and Cellular Basis of Digestion pp. 297–308, (Amsterdam: Elsevier)Google Scholar
  57. 57.
    Volwerk, J.J. and De Haas, G. (1982). Pancreatic phospholipase A2: a model for membrane—bound enzymes. In Jost, P.C. and Griffits, O.H. (eds.) Lipid Protein Interactions Vol. 1, pp. 69–149, (New York: Wiley—Interscience)Google Scholar
  58. 58.
    Goormaghtigh, E., van Campenhoud, M. and Ruyss-chaert, J.-M. (1981). Lipid phase. Separation mediates binding of porcine pancreatic phospholipase A2 to its substrate. Biochem. Biophys. Res. Commuti 101, 1410–18CrossRefGoogle Scholar
  59. 59.
    Borgstròm, B. (1980). Importance of phospholipids, pancreatic phospholipase A2 and fatty acid for the digestion of dietary fat. In vitro experiments with the porcine enzymes. Gastroenterology, 78, 954–62PubMedGoogle Scholar
  60. 60.
    Gargouri, Y., Pieroni, G., Rivière, C., Lowe, P.A., Sauniére, J.-F., Sarda, L. and Verger, R. (1986). Importance of human gastric lipase for intestinal lipolysis in an in vitro study. Biochim. Biophys. Acta, 879, 419–23PubMedGoogle Scholar
  61. 61.
    Larsson, A. and Erlanson-Albertsson, C. (1986). Effect of phosphatidylcholine and free fatty acid on the activity of pancreatic lipase-colipase. Biochim. Biophys. Acta 876, 543–50PubMedGoogle Scholar
  62. 62.
    Hamosh, M., Scanlon, J.W., Ganot, D., Likel, M., Scanlon, K.B. and Hamosh, P. (1981). Fat digestion in the newborn. Characterisation of lipase in gastric aspirates of premature and term infants. J. Clin. Invest., 67, 838–46PubMedCrossRefGoogle Scholar
  63. 63.
    Abrams, C.K., Hamosh, M., Hubbard, V.S., Dutta, S.K. and Hamosh, P. (1982). Fat digestion in cystic fibrosis-compensatory role of lingual lipase Clin. Res. 30, 279AGoogle Scholar
  64. 64.
    Lombardo, D. and Guy, O. (1980). Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim. Biophys. Acta 611, 147–55PubMedGoogle Scholar
  65. 65.
    Zentler-Munro, P.L., Fine, D.R., Fitzpatrick, W.J.F. and Northfield, T.C. (1984). Effect of intrajejunal acidity on lipid digestion and aqueous solubilisation of bile acids and lipids in health using a new simple method of lipase inactivation Gut 25, 491–9PubMedCrossRefGoogle Scholar
  66. 66.
    Borgstròm, B. (1964). Influence of bile salt, pH and time on the action of pancreatic lipase; physiological implications. Lipid Res. 5, 522–33Google Scholar
  67. 67.
    Hofmann, A.F. and Borgstròm B. (1964). The intestinal phase of fat digestion in man: The lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. Clin. Invest. 43, 247–57CrossRefGoogle Scholar
  68. 68.
    Hofmann, A.F. and Borgstròm, B. (1962). Physico-chemical state of lipids in intestinal content during their digestion and absorption. Fed. Proc. 21, 43–50PubMedGoogle Scholar
  69. 69.
    Patton, J.S. and Carey, M.C. (1979). Watching fat digestion. The formation of visible product phases by pancreatic lipase is described. Science 204, 145–48PubMedCrossRefGoogle Scholar
  70. 70.
    Stafford, R.J. and Carey, M.C. (1981). Physical-chemical nature of the aqueous lipids in intestinal content after a fatty meal. Revision of the Hofmann-Borgstròm Hypothesis. Clin. Res. 28, 511AGoogle Scholar
  71. 71.
    Stafford, R.J., Donovan, G.B., Benedek, G.B. and Carey, M.C. (1980). Physical-chemical characteristics of aqueous duodenal content after a fatty meal. Gastroenterology 80, 1291, Abstr.Google Scholar
  72. 72.
    Fine, D., Brown, C., Fine, M. and Northfield, T.C. (1983). Two new phases in ultracentrifuged chyme. Clin. Sci. 65, 41PGoogle Scholar
  73. 73.
    Fine, D., Brown, C. and Northfield, T.C. (1985). Two new phases in ultracentrifuged chyme. Gastroenterology 91, 202, Abstr.Google Scholar
  74. 74.
    Holt, P.R., Fairchild, B.M. and J. Weiss, J. (1986). A liquid crystalline phase in human intestinal contents during fat digestion. Lipids 21, 444–6PubMedCrossRefGoogle Scholar
  75. 75.
    Carey, M.C. (1983). In Barbara, L., Dowling, R.H., Hofmann, A.F. and Roda, E. (eds.) Bile Acids in Gastroenterology pp. 19–56. (Boston: MTP Press)Google Scholar
  76. 76.
    Borgstròm, B., Barrowman, J.A. and Lindstròm, M. (1985). Roles of bile acids in intestinal lipid digestion and absorption. In Danielsson, H. and Sjòvall, J. (eds.) Sterols and Bile Acids pp. 405–425. (Amsterdam: Elsevier)CrossRefGoogle Scholar
  77. 77.
    Reynier, M.O., Crotte, C., Montret, J.C., Sauve, P. and Gerolami, A. (1987). Intestinal cholesterol and oleic acid uptake from solutions supersaturated with lipids Lipids 22, 28–32PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • B. Borgström
    • 1
  1. 1.Department of Physiological ChemistryUniversity of LundLundSweden

Personalised recommendations