Skip to main content

Fat Digestion and Solubilisation

  • Chapter
  • 73 Accesses

Abstract

The main outlines of the process of fat digestion and absorption have been fairly well established: after absorption from the intestine dietary triglyceride appears in the milky chyle1 as triglyceride, bile2 and pancreatic juice3 normally being necessary for this process. What takes place in between, however, has long been the subject of great controversy and the details are not yet fully established4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Munk, I. (1900). Zur Frage des Fettresorption. Z. Physiol 14, 153–6

    Google Scholar 

  2. Bernard, C. (1849). Recherches sur les usages du sac pancreatique dans la digestion. Acad. Sci., 28, 249–85

    Google Scholar 

  3. Dastre, A. (1890). Recherches sur la bile. Arch. Physiol., 5 sereie, 2, 315–30

    Google Scholar 

  4. Borgstrom, B. and Patton, J.S. (1988). Luminal events in gastrointestinal lipid digestion. Handbook of Physiology In Press)

    Google Scholar 

  5. Hamosh, M. (1986). Lingual lipase. Gastroenterology 90, 1290–7

    PubMed  CAS  Google Scholar 

  6. Lindstrom, M.B., Sternby, B. and Borgstrom, B. (1988). Concerted action of human carboxyl ester lipase and pancreatic lipase during lipid digestion in vitro: importance of the physicochemical state of the substrate. Biochim. Biophys Acta 959, 178–184

    PubMed  CAS  Google Scholar 

  7. Hernell, O., Blackberg, L., Fredrikzon, B. and Olivecrona, T. (1981). Bile salt stimulated lipase in human milk and lipid digestion during the neonatal period. In Lebenthal, E. (ed.) Textbook of Gastroenterology and Nutrition of Infancy pp. 465–471, (New York: Raven Press)

    Google Scholar 

  8. Carey, M.C. (1982). The enterohepatic circulation. In Arias, I., Popper, H., Schachter, D. and Schafritz, D.A. (eds.) The Liver: Biology and Pathobiology) pp. 429–465, (New York: Raven Press)

    Google Scholar 

  9. Mazer, N.A., Carey, M.C., Kwasnic, R.F. and Benedek, G.B. (1979). Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape and thermodynamics of bile salt micelles. Biochemistry 18, 3064–75

    Article  PubMed  CAS  Google Scholar 

  10. Lindstrom, M., Ljusberg-Wahren, H., Larsson, K. and Borgstrom, B. (1981). Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 16, 749–54

    Article  PubMed  CAS  Google Scholar 

  11. Carey, M.C., Small, D.M. and Bliss, C.M. (1983). Lipid digestion and absorption. Annu. Rev. Physiol 45, 651–77

    Article  PubMed  CAS  Google Scholar 

  12. Borgstrom, B. (1985). The micellar hypothesis of fat absorption: must it be revisited? Scand. Gastroenterol 20, 389–94

    Article  CAS  Google Scholar 

  13. Thomson, A.B.R. and Dietschy, J.M. (1981). In Johnson, C.R. (ed.) Physiology of the Gastrointestinal Tract. pp. 1147–220, (New York: Raven Press)

    Google Scholar 

  14. Volhard, F. (1901). Uber das fettspaltende Ferment des Magens. Z. Klin. Med. 42, 414

    Google Scholar 

  15. Borgstrom, B., Dalqvist, A., Lundh, G. and Sjovall, J. (1957). Studies of intestinal digestion and absorption in the human. Clin. Invest 36, 1521–36

    Article  CAS  Google Scholar 

  16. Hamosh, M. (1981). Oral lipases and lipid digestion during the neonatal period. In Lebenthal, E. (ed.) Textbook of Gastroenterology and Nutrition in Infancy pp. 445–63 (New York: Raven Press)

    Google Scholar 

  17. Otterby, D.E., Ramsey, H.A. and Wise, G.H. (1964). Lipolysis of milk fat by pregastric esterase in the abdomen of the calf. Dairy Set 47, 993–7

    Article  CAS  Google Scholar 

  18. Cohen, M., Morgan, R.G.H. and Hofmann, A.F. (1971). Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60, 1–15

    PubMed  CAS  Google Scholar 

  19. Hamosh, M. (1984). Lingual lipase. In Borgstrom, B. and Brockman, H.L. (eds.) Lipases pp. 49–82. (Amsterdam: Elsevier)

    Google Scholar 

  20. Hamosh, M. (1978). Rat lingual lipase: factors affecting enzyme activity and secretion. Am. J. Physiol 235, E416–E421

    PubMed  CAS  Google Scholar 

  21. Hamosh, M. and Burns, W.A. (1977). Lipolytic activity of human lingual glands (Ebner). Lab. Invest. 37, 603–8

    PubMed  CAS  Google Scholar 

  22. Docherty, A.J.P., Bodmer, M.W., Angal, S., Verger, R., Riviere, C., Lowe, P.A., Lyons, A., Emtage, J.S. and Harris, T.J.R. (1985). Molecular cloning and nucleotide sequence of rat lingual lipase cDNA. Nucl. Acids Res. 13, 1891–903

    Article  PubMed  CAS  Google Scholar 

  23. Bernback, S., Hernell, O. and Blackberg, L. (1985). Purification and molecular characterisation of bovine pregastric lipase. Eur. J. Biochem. 148, 233–8

    Article  PubMed  CAS  Google Scholar 

  24. Gagouri, Y. Pieroni, G., Riviere, C., Sauniere, J.-F., Lowe, P.A., Sarda, L. and Verger, R. (1986). Kinetic assay of human gastric lipase on short-and long-chain triacylglycerol emulsions. Gastroenterology 91, 919–25

    Google Scholar 

  25. Gargouri, Y., Pieroni, G. Lowe, P.A., Sarda, L. and Verger, R. (1986). Human gastric lipase. The effect of amphiphiles. Eur. J. Biochem. 156, 305–10

    Article  PubMed  CAS  Google Scholar 

  26. Verger, R., De Haas, G.H., Sarda, L. and Desnuelle, P. (1969). Purification from porcine pancreas of two molecular species with lipase activity. Biochim. Biophys. Acta 188, 272–82

    PubMed  CAS  Google Scholar 

  27. De Caro, J., Boudouard, M., Bonicel, J., Goudoni, A., Desnuelle, P. and Rovery, M. (1981). Porcine pancreatic lipase. Completion of the primary structure. Biochim. Biophys. Acta 671, 129–38

    PubMed  Google Scholar 

  28. Morgan, R.G.H, Barrowman, J. and Borgstrom, B. (1969). The effect of sodium taurodeoxycholate and pH on the gel filtration behaviour of rat pancreatic protein and lipases. Biochim Biophys. Acta 175, 65–75

    PubMed  CAS  Google Scholar 

  29. Maylie, M.F., Charles, M., Gache, C. and Desnuelle, P. (1971). Isolation and partial purification of a pancreatic colipase. Biochim. Biophys. Acta 229, 286–9

    PubMed  CAS  Google Scholar 

  30. Patton, J.S., Albertsson, P.-A., Erlanson, C. and Borgstrom, B. (1973). Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography. J Biol Chem. 253, 4195–202

    Google Scholar 

  31. Borgstrom, B. (1982). The temperature-dependent interfacial inactivation of porcine pancreatic lipase. Effect of colipase and bile salts. Biochim. Biophys. Acta 712, 490–7

    PubMed  CAS  Google Scholar 

  32. Borgstrom, B. (1975). On the interactions between pancreatic lipase and colipase and the substrate and the importance of bile salts. J. Lipid Res. 16, 411–17

    CAS  Google Scholar 

  33. Vandermeers, A., Vandermeers, M.C., Rathe, J. and Christophe, J. (1975). Effect of colipase on adsorption and activity of rat pancreatic lipase on emulsified tributyrine in the presence of bile salts. FEBS Lett. 49, 334–7

    Article  PubMed  CAS  Google Scholar 

  34. Momsen, W.E. and Brockman, H.L. (1976). Effect of colipase and taurodeoxycholate on the catalytic and physical properties of liapse B at an oil-water interface. Biol Chem. 251, 378–53

    CAS  Google Scholar 

  35. Borgstrom, B. and Erlanson, C. (1971). Pancreatic juice colipase: Physiological importance. Biochim. Biophys. Acta 242, 509–13

    PubMed  CAS  Google Scholar 

  36. Borgstrom, B. and Erlanson-Albertsson, C. (1984). Pancreatic colipase. In Borgstrom, B. and Brockman, H.L. (eds.) Lipases pp. 151–83, (Amsterdam: Elsevier)

    Google Scholar 

  37. Patton, J.S. (1981). Gastrointestinal digestion. In Johnson, L.R. (ed.) Physiology of the Gastrointestinal Tract, pp. 1123–46. (New York: Raven Press)

    Google Scholar 

  38. Verger, R. (1984). Pancreatic lipase. In Borgstròm, B. and Brockman, H.L. (eds.) Lipases, pp. 83–150, (Amsterdam: Elsevier)

    Google Scholar 

  39. Erlanson-Albertsson, C. and Åkerlund, H.-E (1982). Conformational change in pancreatic lipase induced by colipase. FEBS Lett. 155, 38–42

    Article  Google Scholar 

  40. Vandermeers, A., Vandermeers-Piret, M.C., Rathe, J. and Christophe, J. (1974). On human pancreatic triacylglycerol lipase: isolation and some properties. Biochim. Biophys. Acta 370, 257–68

    PubMed  CAS  Google Scholar 

  41. Borgstròm, B. and Hildebrand, H. (1975). Lipase and colipase activities of human small intestinal contents after a liquid test meal. Scand. J. Gastroenterol. 10, 585–91

    Google Scholar 

  42. Borgstròm, B., Wieloch, T. and Erlanson-Albertsson, C. (1979). Evidence for a pancreatic pro-colipase and its activation by trypsin. FEBS Lett. 108, 407–10

    Article  PubMed  Google Scholar 

  43. Charles, M., Erlanson, C., Bianchetta, J., Joffre, J., Guidoni, A. and Rovery, M. (1974). The primary structure of porcine colipase II. I. The amino acid sequence. Biochim. Biophys. Acta 359, 186–97

    PubMed  CAS  Google Scholar 

  44. Erlanson, C., Charles, M., Astier, M. and Desnuelle, P. (1974). The primary structure of porcine colipase II. II The disulphide bridges. Biochim. Biophys. Acta 359, 198–203

    PubMed  CAS  Google Scholar 

  45. Larsson, A. and Erlanson-Albertsson, C. (1981). The identity of two forms of activated colipase from porcine pancreas. Biochim. Biophys. Acta 664, 538–48

    PubMed  CAS  Google Scholar 

  46. Gaskin, K.J., Durie, P.R., Hill, R.E., Lee, C.M. and Forstner, G.G. (1982). Colipase and maximally activated pancreatic lipase in normal subjects and patients with steatorrhea. . Clin. Invest. 69, 427–34

    Article  CAS  Google Scholar 

  47. Gaskin, K.J„ Durie, P.R., Lee, L., Hill, R. and Forstner, G.G. (1984). Colipase and lipase secretion in childhood-onset pancreatic insufficiency. Delineation of patients with steatorrhea secondary to relative colipase deficiency. Gastroenterology 86, 1–7

    PubMed  Google Scholar 

  48. Olivecrona, T. and Bengtsson, G. 1984). In Borgstròm, B. and Brockman, H.L. (eds.) Lipases pp. 205–62, (Amsterdam: Elsevier)

    Google Scholar 

  49. Freed, L.M., York, C.M., Hamosh, M., Sturman, J.A. and Hamosh, P. (1986). Bile salt-stimulated lipase in non-primate milk: Longitudinal variation and lipase characteristics in cat and dog milk. Biochim. Biophys. Acta 878, 209–15

    PubMed  CAS  Google Scholar 

  50. Lombardo, D., Fauvel, J. and Guy, O. (1980). Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. Biochim. Biophys. Acta 611, 136–46

    PubMed  CAS  Google Scholar 

  51. Hernell, O., Blàckberg, L. and Bernbàck, S. (1987). Milk lipase and in vivo lipolysis. In Lònnerdahl, B. and Atkinson, S. (eds.) Protein and N-protein Nitrogen in Human Milk (CRC Press) (In press)

    Google Scholar 

  52. Bhat, S.G. and Brockman, H.L. (1982). The role of cholesterol ester hydrolysis and synthesis in cholesterol transport across the rat intestinal mucosa membrane; a new concept. Biochem. Biophys. Res. Commun. 109, 486–92

    Article  PubMed  CAS  Google Scholar 

  53. Watt, S.M. and Simmonds, W.J. (1981). The effect of pancreatic diversion on lymphatic absorption and esterification of cholesterol in the rat. J. Lipid Res. 22, 157–65

    PubMed  CAS  Google Scholar 

  54. Lombardo, D., Campese, D., Multigner, L., Lafont, H. and De Caro, A. (1983). On the probable involvement on arginine residues in the bile salt-binding site of human pancreatic carboxyl ester hydrolase. Eur. J. Biochem. 133, 327–33

    Article  PubMed  CAS  Google Scholar 

  55. Blàckberg, L. and Hernell, O. (1981). The bile salt-stimulated lipase in human milk: purification and characterisation. Eur. J. Biochem. 116, 221–25

    Article  PubMed  Google Scholar 

  56. Erlanson-Albertsson, C. (1986). Pancreatic carboxyl ester hydrolyseand non-enzymatic constituents of pancreatic juice. In Desnuelle, P., Sjòstròm, H. and Norén, O. (eds.) Molecular and Cellular Basis of Digestion pp. 297–308, (Amsterdam: Elsevier)

    Google Scholar 

  57. Volwerk, J.J. and De Haas, G. (1982). Pancreatic phospholipase A2: a model for membrane—bound enzymes. In Jost, P.C. and Griffits, O.H. (eds.) Lipid Protein Interactions Vol. 1, pp. 69–149, (New York: Wiley—Interscience)

    Google Scholar 

  58. Goormaghtigh, E., van Campenhoud, M. and Ruyss-chaert, J.-M. (1981). Lipid phase. Separation mediates binding of porcine pancreatic phospholipase A2 to its substrate. Biochem. Biophys. Res. Commuti 101, 1410–18

    Article  CAS  Google Scholar 

  59. Borgstròm, B. (1980). Importance of phospholipids, pancreatic phospholipase A2 and fatty acid for the digestion of dietary fat. In vitro experiments with the porcine enzymes. Gastroenterology, 78, 954–62

    PubMed  Google Scholar 

  60. Gargouri, Y., Pieroni, G., Rivière, C., Lowe, P.A., Sauniére, J.-F., Sarda, L. and Verger, R. (1986). Importance of human gastric lipase for intestinal lipolysis in an in vitro study. Biochim. Biophys. Acta, 879, 419–23

    PubMed  CAS  Google Scholar 

  61. Larsson, A. and Erlanson-Albertsson, C. (1986). Effect of phosphatidylcholine and free fatty acid on the activity of pancreatic lipase-colipase. Biochim. Biophys. Acta 876, 543–50

    PubMed  CAS  Google Scholar 

  62. Hamosh, M., Scanlon, J.W., Ganot, D., Likel, M., Scanlon, K.B. and Hamosh, P. (1981). Fat digestion in the newborn. Characterisation of lipase in gastric aspirates of premature and term infants. J. Clin. Invest., 67, 838–46

    Article  PubMed  CAS  Google Scholar 

  63. Abrams, C.K., Hamosh, M., Hubbard, V.S., Dutta, S.K. and Hamosh, P. (1982). Fat digestion in cystic fibrosis-compensatory role of lingual lipase Clin. Res. 30, 279A

    Google Scholar 

  64. Lombardo, D. and Guy, O. (1980). Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim. Biophys. Acta 611, 147–55

    PubMed  CAS  Google Scholar 

  65. Zentler-Munro, P.L., Fine, D.R., Fitzpatrick, W.J.F. and Northfield, T.C. (1984). Effect of intrajejunal acidity on lipid digestion and aqueous solubilisation of bile acids and lipids in health using a new simple method of lipase inactivation Gut 25, 491–9

    Article  PubMed  CAS  Google Scholar 

  66. Borgstròm, B. (1964). Influence of bile salt, pH and time on the action of pancreatic lipase; physiological implications. Lipid Res. 5, 522–33

    Google Scholar 

  67. Hofmann, A.F. and Borgstròm B. (1964). The intestinal phase of fat digestion in man: The lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. Clin. Invest. 43, 247–57

    Article  CAS  Google Scholar 

  68. Hofmann, A.F. and Borgstròm, B. (1962). Physico-chemical state of lipids in intestinal content during their digestion and absorption. Fed. Proc. 21, 43–50

    PubMed  CAS  Google Scholar 

  69. Patton, J.S. and Carey, M.C. (1979). Watching fat digestion. The formation of visible product phases by pancreatic lipase is described. Science 204, 145–48

    Article  PubMed  CAS  Google Scholar 

  70. Stafford, R.J. and Carey, M.C. (1981). Physical-chemical nature of the aqueous lipids in intestinal content after a fatty meal. Revision of the Hofmann-Borgstròm Hypothesis. Clin. Res. 28, 511A

    Google Scholar 

  71. Stafford, R.J., Donovan, G.B., Benedek, G.B. and Carey, M.C. (1980). Physical-chemical characteristics of aqueous duodenal content after a fatty meal. Gastroenterology 80, 1291, Abstr.

    Google Scholar 

  72. Fine, D., Brown, C., Fine, M. and Northfield, T.C. (1983). Two new phases in ultracentrifuged chyme. Clin. Sci. 65, 41P

    Google Scholar 

  73. Fine, D., Brown, C. and Northfield, T.C. (1985). Two new phases in ultracentrifuged chyme. Gastroenterology 91, 202, Abstr.

    Google Scholar 

  74. Holt, P.R., Fairchild, B.M. and J. Weiss, J. (1986). A liquid crystalline phase in human intestinal contents during fat digestion. Lipids 21, 444–6

    Article  PubMed  CAS  Google Scholar 

  75. Carey, M.C. (1983). In Barbara, L., Dowling, R.H., Hofmann, A.F. and Roda, E. (eds.) Bile Acids in Gastroenterology pp. 19–56. (Boston: MTP Press)

    Google Scholar 

  76. Borgstròm, B., Barrowman, J.A. and Lindstròm, M. (1985). Roles of bile acids in intestinal lipid digestion and absorption. In Danielsson, H. and Sjòvall, J. (eds.) Sterols and Bile Acids pp. 405–425. (Amsterdam: Elsevier)

    Chapter  Google Scholar 

  77. Reynier, M.O., Crotte, C., Montret, J.C., Sauve, P. and Gerolami, A. (1987). Intestinal cholesterol and oleic acid uptake from solutions supersaturated with lipids Lipids 22, 28–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Borgström, B. (1988). Fat Digestion and Solubilisation. In: Northfield, T., Jazrawi, R., Zentler-Munro, P. (eds) Bile Acids in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1249-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1249-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7054-6

  • Online ISBN: 978-94-009-1249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics