Overview: Enterohepatic Circulation of Bile Acids — a Topic in Molecular Physiology

  • A. F. Hofmann


In principle, the scope of physiology should begin where cell biology ends. Physiology deals with the orchestration of functions of multiple cells in different organs, the end results of which are co-ordinated physiological processes such as digestion and absorption or glucose homoeostasis. A triumph of cell biology has been the elucidation of cellular regulatory circuits, and the limiting case is that in which cells regulate their own activities so reliably that there is no need for regulatory circuits involving many organs. In a sense, by analogy, the governance of a university faculty usually uses a tiny proportion of total energy expenditure at the university because most facilities govern themselves effectively, at least most of the time.


Bile Acid Cholic Acid Chenodeoxycholic Acid Deoxycholic Acid Enterohepatic Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vonk, H.J. (1962). Emulgators in the digestive fluids of invertebrates. Arch. Intern. Physiol, 70, 67–85CrossRefGoogle Scholar
  2. 2.
    Hoshita, T. (1985). Bile alcohols and primitive bile acids. In: Danielsson, H. and Sjövall, J. (ed), Sterols and Bile Acids, pp. 279–302. (Amsterdam: Elsevier)CrossRefGoogle Scholar
  3. 3.
    Hofmann, A.F. and Mysels, K.J. (1988). Bile salts as biological surfactants. Colloids and Surfaces, 30, 145–73CrossRefGoogle Scholar
  4. 4.
    Williams, R.T. (1971). Introduction: pathways of drug metabolism. Handb. Exp. Pharmacol., 28, 226Google Scholar
  5. 5.
    Cohen, B.I., Hofmann, A.F., Mosbach, E.H., Stenger, R.J., Rotschild, M.A., Hagey, L.R. and Yoon, Y.B. (1986). Differing effects of nor-ursodeoxycholic or ursodeoxycholic acid on hepatic histology and bile acid metabolism in the rabbit. Gastroenterology, 91, 189–97PubMedGoogle Scholar
  6. 6.
    Lee, S.P., Lester, R. and St. Pyrek, J. (1987). Vulpecholic acid (lα, 3α, 7α-trihydroxy-35β-cholan-24-oic acid): a novel bile acid of a marsupial, Trichosurus vulpécula lesson. J. Lipid Res., 28, 19–31PubMedGoogle Scholar
  7. 7.
    Hofmann, A.F., Palmer, K.R., Yoon, Y.B., Hagey, L.R., Gurantz, D., Huijghebaert, S., Converse, J.L., Cecchetti, S. and Michelotti, E. (1985). The biological utility of bile acid conjugation with glycine or taurine. In: Matern, S, Bock, KW and Gerok, W (eds), Advances in Glucuronide Conjugation, pp. 245–64. (Lancaster: MTP Press)Google Scholar
  8. 8.
    Yoon, Y.B., Hagey, L.R., Hofmann, A.F., Gurantz, D., Michelotti, E.L. and Steinbach, J.H. (1986). Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology, 90, 837–52PubMedGoogle Scholar
  9. 9.
    Palmer, K.R., Gurantz, D., Hofmann, A.F., Clayton, L.M., Hagey, L.R. and Cecchetti, S. (1987). Hypercholeresis induced by nor-chenodeoxycholate in biliary fistula rodent. Am. J. Physiol., 252, G219–28PubMedGoogle Scholar
  10. 10.
    Lake, J.R., Renner, E.L., Scharschmidt, B.F., Cragoe, E.J. Jr, Hagey, L.R., Lambert, K.J., Gurantz, D. and Hofmann, A.F. The relationship between ursodeoxycholate hypercholeresis and ursodeoxycholate biotransformation. Gastroenteroly, (In press)Google Scholar
  11. 11.
    Ostrow, J.D. (1971). Absorption of organic compounds by injured-gallbladder. J. Lab. Clin. Med., 78, 255–64PubMedGoogle Scholar
  12. 12.
    Lack, L. and Weiner, I.M. (1961). In vitro absorption of bile salts by small intestine of rats and guinea pigs. Am. J. Physiol., 200, 313–17PubMedGoogle Scholar
  13. 13.
    Borgstrom, B., Lundh, G. and Hofmann, A.F. (1963). The site of absorption of conjugated bile salts in man. Gastroenterology, 45, 229–38Google Scholar
  14. 14.
    Hislop, I.G., Hofmann, A.F. and Schoenfield, L J. (1967). Determinants of the rate and site of bile acid absorption in man. J. Clin. Invest., 46, 1070, (abstract)Google Scholar
  15. 15.
    Schalm, S.W., LaRusso, N.F., Hofmann, A.F., Hoffman, N.E., van Berge Henegouwen, G.P. and Korman, M.G. (1978). Diurnal serum levels of primary conjugated bile acids. Assessment by specific radioimmunoassays for conjugates of cholic and chenodeoxy-cholic acid. Gut, 19, 1006–14PubMedCrossRefGoogle Scholar
  16. 16.
    Angelin, B., Einarsson, K. and Hellstrom, K. (1976). Evidence for the absorption of bile acids in the proximal small intestine of normoand hyperlipidaemic subjects. Gut, 17, 420–5PubMedCrossRefGoogle Scholar
  17. 17.
    Angelin, B., Bjorkhem, I., Einarsson, K. and Ewerth, S. (1982). Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J. Clin. Invest., 70, 724–31PubMedCrossRefGoogle Scholar
  18. 18.
    Einarsson, K. and Grundy, S. (1980). Effects of feeding cholic acid and cheno-deoxycholic acid on cholesterol absorption and hepatic secretion of biliary lipids in man. I Lipid Res., 21, 23–34Google Scholar
  19. 19.
    van Berge Henegouwen, G.P. and Hofmann, A.F. (1977). Pharmacology of chenodeoxycholic acid. II. Absorption and metabolism. Gastroenterology, 73, 300–9PubMedGoogle Scholar
  20. 20.
    Dupas, J.L. and Hofmann, A.F. (1984). Passive jejunal absorption of bile acids in vivo: Structure-activity relationships and rate limiting steps. Gastroenterology, 86, 1067 (Abstract)Google Scholar
  21. 21.
    Fini, A. and Roda, A. (1987). Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids. J. Lipid Res., 28, 755–9PubMedGoogle Scholar
  22. 22.
    Mohno, G., Hofmann, A.F., Cravetto, C., Belforte, G. and Bona, B. (1986). Simulation of the metabolism and enterohepatic circulation of endogenous chenodeoxycholic acid in man using a physiological pharmacokinetic model. Europ. J. Clin. Invest., 16, 397–414CrossRefGoogle Scholar
  23. 23.
    Isenberg, J.I., Hogan, D.L., Koss, M.A. and Selling, J.A. (1986). Human duodenal mucosal bicarbonate secretion: evidence for basal secretion and stimulation by hydrochloric acid and a synthetic prostaglandin Ei analogue. Gastroenterology, 91, 370–8PubMedGoogle Scholar
  24. 24.
    Lucas, M. (1983). Determination of acid surface pH in vivo in rat proximal jejunum. Gut, 24, 734–9PubMedCrossRefGoogle Scholar
  25. 25.
    LaRusso, N.F., Szczepanik, P.A., Hofmann, A.F. and Coffin, S.B. (1977). Effect of deoxycholic acid ingestion on bile acid metabolism and biliary lipid secretion in normal subjects. Gastroenterology, 72, 132–40PubMedGoogle Scholar
  26. 26.
    LaRusso, N.F., Hoffman, N.E., Hofmann, A.F., Northfield, T.C. and Thistle, J.L. (1975). Effect of primary bile acid ingestion on bile acid metabolism and biliary lipid secretion in gallstone patients. Gastroenterology, 69, 1301–14PubMedGoogle Scholar
  27. 27.
    Nilsell, K., Angelin, B., Leijd, B. and Einarsson, K. (1983). Comparative effects of ursodeoxycholic and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis. Gastroenterology, 85, 1248–56PubMedGoogle Scholar
  28. 28.
    von Bergmann, K., Epple-Gutsfeld, M. and Leiss, O. (1984). Differences in the effects of chenodeoxycholic and ursodeoxycholic acids on biliary lipid secretion and bile acid synthesis in patients with gallstones. Gastroenterology, 87, 136–43Google Scholar
  29. 29.
    Hardison, W.G.M. and Grundy, S.M. (1984). Effect of ursodeoxycholate and its taurine conjugate on bile acid synthesis and cholesterol absorption. Gastroenterology, 87, 130–5PubMedGoogle Scholar
  30. 30.
    Stahl, G.E., Fayer, J.C. and Watkins, J.B. (1987). Rapid passive proximal bile salt (BS) absorption alters the enterohepatic circulation (EHC) in young rats. Gastroenterology, 92, 1781 (Abstract)Google Scholar
  31. 31.
    Honkanen, R.E., Rigler, M.W. and Patton, J.S. (1985). Dietary fat assimilation and bile salt absorption in the killifish intestine. Am. J. Physiol., 249, G399–407PubMedGoogle Scholar
  32. 32.
    Baker, R.D. and Searle, G.W. (1960). Bile salt absorption at various levels of rat small intestine. Proc. Soc. Exp. Biol. Med., 105, 521–3PubMedGoogle Scholar
  33. 33.
    Tappeiner, AJ.F.H. (1878). Ueber die Aufsaugung der Gallsauren alkalien im Dunn-darme. Wien. Akad. Sitzber., 77, 281–304Google Scholar
  34. 34.
    Verzar, F.(1936). Absorption from the Intestine, 294 pp. (London: Longmans, Green & Co)Google Scholar
  35. 35.
    Weiner, I.M. and Lack, L. (1968). Bile salt absorption. Enterohepatic circulation. In: Code, CF (ed), Handbook of Physiology, Section 6: Alimentary Canal, pp. 1439–55. (Washington DC: American Physiological Society)Google Scholar
  36. 36.
    Kramer, W., Burckhardt, G., Wilson, FA and Kurz, G. (1983). Bile salt-binding polypeptides in brush-border membrane vesicles from rat small intestine revealed by photoaffinity labeling. J. Biol Chem., 258, 3623–7PubMedGoogle Scholar
  37. 37.
    Wilson, FA. The intestinal transport of bile acids. In: Handbook of Physiology. (In press)Google Scholar
  38. 38.
    Weinberg, S.L., Burckhardt, G. and Wilson, F.A. (1986). Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J. Clin. Invest., 78, 44–50PubMedCrossRefGoogle Scholar
  39. 39.
    Hofmann, A.F., Cravetto, C., Molino, G., Belforte, G. and Bona, B. (1987). Simulation of the metabolism and enterohepatic circulation of endogenous deoxycholic acid in man using a physiological pharmacokinetic model for bile acid metabolism. Gastroenterology, 93, 693–709PubMedGoogle Scholar
  40. 40.
    Hofmann, A.F. (1983). Pharmacology of chenodeoxycholic and ursodeoxycholic acid in man. In: Paumgartner, G., Stiehl, A. and Gerok, W. (eds), Bile Acids and Cholesterol in Health and Disease, pp. 301–36. (Lancaster: MTP Press)Google Scholar
  41. 41.
    Hofmann, A.F. (1977). The enterohepatic circulation of bile acids in man. Clin. Gastroenterol, 6, 3–24PubMedGoogle Scholar
  42. 42.
    Hagey, L.R., Neoptolemos, J.P., Rossi, S.S., Ton-Nu, H.-T., Hofmann, A.F. and Whitney, J.O. (1985). Deamidation and ester glucuronidation: New side chain biotransformations of bile acids occurring in mammals. Hepatology, 5, 1023 (Abstract)Google Scholar
  43. 43.
    Hepner, G.W., Sturman, J.A., Hofmann, A.F. and Thomas, P.J. (1973). Metabolism of steroid and amino acid moieties of conjugated bile acids in man. III. Cholyltaurine (taurocholic acid). J. Clin. Invest., 52, 433–40PubMedCrossRefGoogle Scholar
  44. 44.
    Hepner, G.W., Hofmann, A.F. and Thomas, P.J. (1972). Metabolism of steroid and amino acid moieties of conjugated bile acids in man. I. Cholylglycine. J. Clin. Invest., 51, 1889–97PubMedCrossRefGoogle Scholar
  45. 45.
    Hepner, G.W., Hofmann, A.F. and Thomas, P.J. (1972). Metabolism of steroid and amino acid moieties of conjugated bile acids in man. II. Glycine-conjugated dihydroxy bile acids. J. Clin. Invest., 51, 1898–1905PubMedCrossRefGoogle Scholar
  46. 46.
    Fromm, H., Thomas, P.J. and Hofmann, A.F. (1973). Sensitivity and specificity in tests of distal ileal function. Prospective comparison of bile acid and vitamin B12 absorption in ileal resection patients. Gastroenterology, 64, 1077–90PubMedGoogle Scholar
  47. 47.
    Lauterberg, B.H., Newcomer, A.D. and Hofmann, A.F. (1978). Clinical value of the bile acid breath test: evaluation of the Mayo Clinic experience. Mayo. Clin. Proc., 53, 227–33Google Scholar
  48. 48.
    O’Connor, M.P., Healy, M., Kehely, A., Keane, C.T., O’Moore, R.R. and Weir, D.G. (1987). H2- or 14C-breath tests in the diagnosis of small intestinal bacterial overgrowth. Gut, 10, A1353 (Abstract)Google Scholar
  49. 49.
    Newcomer, A.D., Hofmann, A.F., DiMagno, E.P., Thomas, P.J. and Carlson, G.L. (1979). Triolein breath test: a sensitive and specific test for fat malabsorption. Gastroenterology, 76, 6–13PubMedGoogle Scholar
  50. 50.
    Graham, D.Y., Klein, P.D., Evans, D J., Alpert, L.C., Opekun, A. and Boutton, T.W. (1987). Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet, 1, 1174–7PubMedCrossRefGoogle Scholar
  51. 51.
    Hoffman, N.E. and Hofmann, A.F. (1977). Metabolism of steroid and amino acid moieties of conjugated bile acids in man. V. Equations for the perturbed enterohepaticcirculation and their application. Gastroenterology, 72, 141–8PubMedGoogle Scholar
  52. 52.
    Marcus, S.N. and Heaton, K.W. (1986). Intestinal transit, deoxycholic acid and the cholesterol saturation of bile — three inter-related factors. Gut, 27, 550–8PubMedCrossRefGoogle Scholar
  53. 53.
    Allan, R.N., Thistle, J.L. and Hofmann, A.F. (1976). Lithocholate metabolism during chenotherapy for gallstone dissolution. II. Absorption and sulphation. Gut, 17, 413–9PubMedCrossRefGoogle Scholar
  54. 54.
    Cowen, A.E., Korman, M.G., Hofmann, A.F. and Cass, O.W. (1975). Metabolism of lithocholate in healthy men. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates. Gastroenterology, 69, 59–66 PubMedGoogle Scholar
  55. 55.
    Cowen, A.E., Korman, M.G., Hofmann, A.F., Cass, O.W. and Coffin, S.B. (1975). Metabolism of lithocholate in healthy men. II. Enterohepatic circulation. Gastroenterology, 69, 67–76PubMedGoogle Scholar
  56. 56.
    Fisher, R.L., Hofmann, A.F., Rossi, S., Converse, J.L. and Lan, S.P. (1986). Pathogenesis of morphological damage and major serum amino-transferase (AT) elevation in NCGS patients: Enhanced liver cell sensitivity — not defective lithocholate metabolism. Hepatology, 6, 1169Google Scholar
  57. 57.
    Lindstedt, S. (1957). The turnover of cholic acid in man. Acta Physiol Scand., 40, 1–9PubMedCrossRefGoogle Scholar
  58. 58.
    Vlahcevic, Z.R., Bell, C.C. Jr, Buhac, I., Farrar, J.T. and Swell, L. (1970). Diminished bile acid pool size in patients with gallstones. Gastroenterology, 59, 165–73PubMedGoogle Scholar
  59. 59.
    Hofmann, A.F. and Hoffman, N.E. (1974). Measurement of bile acid kinetics by isotope dilution in man. Gastroenterology, 61, 314–23Google Scholar
  60. 60.
    Hofmann, A.F. and Cummings, S.A. (1983). Measurement of bile acid and cholesterol kinetics in man by isotope dilution: principles and applications. In: Barbara, L., Dowling, R.H., Hofmann, A.F. and Roda, E. (eds), Bile Acids in Gastroenterology, pp. 75–117. (Lancaster: MTP Press)Google Scholar
  61. 61.
    Hoffman, N.E. and Hofmann, A.F. (1974). Metabolism of steroid and amino acid moieties of conjugated bile acids in man. IV. Description and validation of a multicompartmental model. Gastroenterology, 61, 887–97Google Scholar
  62. 62.
    Simmonds, W.J., Korman, M.G., Go, V.L.W. and Hofmann, A.F. (1973). Radioimmunoassay of conjugated cholyl bile acids in serum. Gastroenterology, 65, 705–11PubMedGoogle Scholar
  63. 63.
    Bischoff, K.B. and Brown, R.G. (1966). Drug distribution in mammals. Chem. Eng. Progr. Symp. Ser., 62, 32–45Google Scholar
  64. 64.
    Lutz, R.J., Dedrick, R.L. and Zaharko, D.S. (1980). Physiological pharmacokinetics: an in vivo approach to membrane transport. Pharmac. Ther., 11, 559–92CrossRefGoogle Scholar
  65. 65.
    Molino, G., Milanese, M., Villa, A., Gaidano, G. and Cavanna, A. (1978). Discrimination of hepatobiliary diseases by the evaluation of bromosulphophthalein blood kinetics. J. Lab. Clin. Med., 91, 396PubMedGoogle Scholar
  66. 66.
    Hofmann, A.F., Molino, G., Milanese, M. and Belforte, G. (1983). Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man. J. Clin. Invest., 71, 1003–22PubMedCrossRefGoogle Scholar
  67. 67.
    Cravetto, C., Molino, G., Hofmann, A.F., Belforte, G. and Bona, B. Computer simulation of portal venous shunting and other isolated hepatobiliary defects of the enterohepatic circulation of bile acids using a physiological pharmacokinetc model. Hepatology, (In press)Google Scholar
  68. 68.
    Grundy, S.M., Hofmann, A.F., Davignon, J. and Ahrens, E.H. Jr (1966). Human cholesterol synthesis is regulated by bile acids. J. Clin. Invest., 45, 1018–19CrossRefGoogle Scholar
  69. 69.
    Thistle, J.L. and Schoenfield, L.J. (1971). Induced alterations in composition of bile of persons having cholelithias. Gastroenterology, 61, 488–96PubMedGoogle Scholar
  70. 70.
    Danzinger, R.G., Hofmann, A.F., Schoenfield, L J. and Thistle, J.L. (1972). Dissolution of cholesterol gallstones by chenodeoxycholic acid. N. Engl. J. Med., 286, 1–8PubMedCrossRefGoogle Scholar
  71. 71.
    Sacquet, E., Parquet, M., Riottot, M., Raizman, A., Jarrige, P., Huguet, C. and Infante, R. (1983). Intestinal absorption, excretion, and biotransformation of hyodeoxycholic acid in man. J. Lipid Res., 24, 604–13PubMedGoogle Scholar
  72. 72.
    Poupon, R., Poupon, R.E., Calmus, Y., Chretein, Y., Ballet, F. and Darnis, F. (1987). Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet, 1, 834–6PubMedCrossRefGoogle Scholar
  73. 73.
    Hofmann, A.F. (1985). Targeting drugs to the enterohepatic circulation: Lessons from bile acids and other endobiotics. J. Controlled Release, 2, 2–11CrossRefGoogle Scholar
  74. 74.
    Roda, A. (1983). Sensitive methods for serum bile acid analysis. In: Barbara, L., Dowling, R.H., Hofmann, A.F. and Roda, E. (eds), Bile Acids in Gastroenterology, pp. 57–68. (Lancaster: MTP Press)Google Scholar
  75. 75.
    Merrick, M.V., Eastwood, MA., Anderson, J.R. and Ross, H.M. (1982). Enterohepatic circulation in man of a gamma-emitting bile-acid conjugate. 23-selena-25-homotauro-cholic acid (SeHCAT). J. Nucl Med., 23, 126–30PubMedGoogle Scholar
  76. 76.
    Malaguti, P., Sciarretta, G., Abbati, A. and Furno, A. (1986). New Radioisotope Tests in Gastroenterology, 139 pp. (Milan: Masson Italia Editori)Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • A. F. Hofmann
    • 1
  1. 1.Division of GastroenterologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations