Advertisement

Antigenic Phenotype and Experimental Herpes Simplex Virus Infection of Cultured Human Fetal Neural Cells

  • P. G. E. Kennedy

Abstract

Human neural cell cultures have proved to be a useful tool in studying the developmental biology of the human nervous system1, 2. These tissue culture systems have also been used in a variety of ways to investigate the pathogenesis of various neurological diseases in which immunopathological mechanisms may be important3–5 and the susceptibility of human neural cells to infection with viruses6, 7. We have favoured the use of cultured human fetal neural cells in such studies because of their greater relevance to human disease compared with cell cultures derived from animal tissues, and also in view of the obvious ethical contraindications to studying such cells in vivo.

Keywords

Schwann Cell Herpes Simplex Virus Type Herpes Simplex Virus Encephalitis Tetanus Toxin Antigenic Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, P. G. E., Lisak, R. P. and Raff, M. C. (1980). Cell type-specific markers for human glial and neuronal cells in culture. Lab. Invest., 43, 342–51PubMedGoogle Scholar
  2. 2.
    Kennedy, P. G. E. and Fok-Seang, J. (1986). Studies on the development, antigenic phenotype and function of human glial cells in tissue culture. Brain, 109, 1261–77PubMedCrossRefGoogle Scholar
  3. 3.
    Kennedy, P. G. E. and Lisak, R. P. (1979). A search for antibodies against glial cells in the serum and cerebrospinal fluid of patients with multiple sclerosis and Guillain-Barré syndrome. J. Neurol. Sci., 44, 125–33PubMedCrossRefGoogle Scholar
  4. 4.
    Kennedy, P. G. E. and Lisak, R. P. (1981). Do patients with demyelinating diseases have antibodies against human glial cells in their sera? J. Neurol. Neurosurg. Psychiatr., 44, 164–7PubMedCrossRefGoogle Scholar
  5. 5.
    Watts, H., Kennedy, P. G. E. and Thomas, M. (1981). The significance of antineuronal antibodies in Alzheimer’s disease. J. Neuroimmunol., 1, 107–16PubMedCrossRefGoogle Scholar
  6. 6.
    Wroblewska, Z., Kennedy, P. G. E., Wellish, M., Lisak, R. P. and Gilden, D. H. (1982). Demonstration of JC virus by immunofluorescence in multiple cell types in experimentally infected adult human brain cell cultures. J. Neurol. Sci., 54, 189–96PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy, P. G. E., Clements, G. B. and Brown, S. M. (1983). Differential susceptibility of human neural cell types in culture to infection with herpes simplex virus. Brain, 106, 101–19PubMedCrossRefGoogle Scholar
  8. 8.
    Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S. and Kennedy, M. C. (1978). Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature, 274, 813–6PubMedGoogle Scholar
  9. 9.
    Raff, M. C., Fields, K. L., Hakomori, S., Mirsky, R., Pruss, R. M. and Winter, J. (1979). Cell-type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res., 174, 283–308PubMedCrossRefGoogle Scholar
  10. 10.
    Dickson, J. G., Flanigan, T. P. and Walsh, F. S. (1982). Cell-surface antigens of human fetal brain and dorsal root ganglion cells in tissue culture. In Rowland, L. P. (ed.). Human Motor Neuron Diseases. pp. 435–51. ( New York: Raven Press )Google Scholar
  11. 11.
    Kennedy, P. G. E. (1982). Neural cell markers and their applications to neurology. J. Neuroimmunol., 2, 35–53PubMedCrossRefGoogle Scholar
  12. 12.
    Eng. L. P., Vanderhaeghen, J. J., Bignami, A. and Gerstl, B. (1971). An acidic protein isolated from fibrous astocytes. Brain Res., 28, 351–4PubMedCrossRefGoogle Scholar
  13. 13.
    Dahl, D. and Bignami, A. (1973). Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res., 61, 279–93PubMedCrossRefGoogle Scholar
  14. 14.
    Schachner, M., Hedley-Whyte, E. T., Hsu, D. W., Schoonmaker, G. and Bignami, A. (1977). Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunperoxidase labelling. J. Cell. Biol., 75, 67–73PubMedCrossRefGoogle Scholar
  15. 15.
    Cotmore, S. F., Crowhurst, S. A. and Waterfield, M. D. (1981). Purification of Thy-1 related glycoproteins from human brain and fibroblasts: comparisons between these molecules and murine glycoproteins carrying Thy-1 and Thy-1,2. Eur. J. Biochem., 11, 597–603Google Scholar
  16. 16.
    Gilden, D. H., Wroblewska, Z., Eng, L. F. and Rorke, L. B. (1976). Human brain in tissue culture, part 5 (identification of glial cells by immunofluorescence). J. Neurol. Sci., 29, 177–84PubMedCrossRefGoogle Scholar
  17. 17.
    Bunge, R. P. (1968). Glial cells and the central myelin sheath. Physiol. Rev., 48, 197–251PubMedGoogle Scholar
  18. 18.
    Norton, W. T. and Autilio, L. A. (1966). The lipid composition of purified bovine brain myelin. J. Neurochem., 13, 213–22PubMedCrossRefGoogle Scholar
  19. 19.
    Lisak, R. P., Pleasure, D. E., Silberberg, D. H., Manning, M. C. and Saida, T. (1981). Long-term culture of bovine oligodendrocytes isolated with a Percoll gradient. Brain Res., 223, 107–22PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, S. U., Sato, Y., Silberberg, D. H., Pleasure, D. E. and Rorke, L. B. (1983). Long-term culture of human oligodendrocytes. Isolation, growth and identification. J. Neurol. Sci., 62, 295–301PubMedCrossRefGoogle Scholar
  21. 21.
    Dimpfel, W., Huang, R. T. C. and Habermann, E. (1977). Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin — A neuronal marker. J. Neurochem., 29, 329–34PubMedCrossRefGoogle Scholar
  22. 22.
    Mirsky, R., Wendon, L. M. B., Black, P., Stolkin, C. and Bray, D. (1978). Tetanus toxin–A cell surface marker for neurones in culture. Brain Res., 148, 251–9PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen, J. and Selvendran, S. (1981). A neuronal cell-surface antigen is found in the CNS but not in peripheral neurones. Nature, 291, 421–3PubMedCrossRefGoogle Scholar
  24. 24.
    Vulliamy, T., Rattray, S. and Mirsky, R. (1981). Cell-surface antigen distinguishes sensory and autonomic peripheral neurones from central neurones. Nature, 291, 418–20PubMedCrossRefGoogle Scholar
  25. 25.
    Anderton, B. H., Thorpe, R., Cohen, J., Selvendran, S. and Woodhams, P. (1980). Specific localization by immunofluorescence of l0nm filament polypeptides. J. Neurocytol., 9, 835–44PubMedCrossRefGoogle Scholar
  26. 26.
    Wood, J. N. and Anderton, B. (1981). Monoclonal antibodies to mammalian neuro-filaments. Biosci. Rep., 1, 263–8PubMedCrossRefGoogle Scholar
  27. 27.
    Eisenbarth, G. S., Walsh, F. S. and Nirenberg, M. (1979). Monoclonal antibody to a plasma membrane antigen of neurones. Proc. Natl. Acad. Sci. USA, 76, 4913–7PubMedCrossRefGoogle Scholar
  28. 28.
    Fields, K. L., Gosling, C., Megson, M. and Stern, P. L. (1975). New cell surface antigens in rat defined by tumours of the nervous system. Proc. Natl. Acad. Sci. USA, 72, 1296–300PubMedCrossRefGoogle Scholar
  29. 29.
    Brockes, J. P., Fields, K. L. and Raff, M. C. (1977). A surface antigenic marker for rat Schwann cells. Nature, 266, 364–6PubMedCrossRefGoogle Scholar
  30. 30.
    Vaheri, A., Ruoslahti, E., Westermark, B. and Ponten, J. (1976). A common cell-typespecific surface antigen in cultured human glial cells and fibroblasts; loss in malignant cells. J. Exp. Med., 143, 64–72PubMedCrossRefGoogle Scholar
  31. 31.
    Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R. and Noble, M. (1983). Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides and growth characteristics. J. Neurosci., 3, 1289–300PubMedGoogle Scholar
  32. 32.
    Raff, M. C., Miller, R. H. and Noble, M. (1983). A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 303, 390–6PubMedCrossRefGoogle Scholar
  33. 33.
    Bottenstein, J. E. and Sato, G. H. (1979). Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA, 76, 514–7PubMedCrossRefGoogle Scholar
  34. 34.
    Kennedy, P. G. E. (1984). Herpes simplex virus and the nervous system. Postgrad. Med. J., 60, 253–9PubMedCrossRefGoogle Scholar
  35. 35.
    Craig, C. P. and Nahmias, A. J. (1973). Different patterns of neurologic involvement with herpes simplex virus type 1 and 2: Isolation of herpes simplex virus type 2 from the buffy coat of two adults with meningitis. J. Infect. Dis., 127, 365–72PubMedCrossRefGoogle Scholar
  36. 36.
    Klastersky, J., Cappel, R., Snoeck, J. M., Flament, J. and Thiry, L. (1972). Ascending myelitis in association with herpes simplex virus. N. Engl. J. Med., 287, 182–4PubMedCrossRefGoogle Scholar
  37. 37.
    Caplan, L. R., Kleeman, F. J. and Berg, S. (1977). Urinary retention probably secondary to herpes genitalia. N. Engl. J. Med., 279, 920–1CrossRefGoogle Scholar
  38. 38.
    Johnson, R. T. (1982). Viral Infections of the Nervous System. ( New York: Raven Press )Google Scholar
  39. 39.
    Bartinger, J. R. (1975). Herpes simplex virus infection of nervous tissue in animals and man. Progr. Med. Virol., 20, 1–26Google Scholar
  40. 40.
    Timbury, M. C. (1971). Temperature-sensitive mutants of herpes simplex virus type 2. J. Gen. Virol., 13, 373–6PubMedCrossRefGoogle Scholar
  41. 41.
    Brown, S. M., Ritchie, D. A. and Subak-Sharpe, J. H. (1973). Genetic studies with herpes simplex virus type 1. The isolation of temperature sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J. Gen. Virol., 18, 329–46PubMedCrossRefGoogle Scholar
  42. 42.
    Clements, G. B. (1975). Selection of biochemically variant, in some cases mutant, mammalian cells in culture. In Klein, G. and Weinhouse, S. (eds.) Advances in Cancer Research. pp. 274–380. ( New York and London: Academic Press )Google Scholar
  43. 43.
    Subak-Sharpe, J. H. (1973). The genetics of herpes virus. Cancer Res., 32, 1385–92Google Scholar
  44. 44.
    Gerdes, J. C., Marsden, H. S., Cook, M. L. and Stevens, J. G. (1979). Acute infection of differentiated neuroblastoma cells by latency-positive and latency-negative HSV is mutants. Virology, 94, 430–41PubMedCrossRefGoogle Scholar
  45. 45.
    Rajcani, J. and Scott, B. S. (1972). Growth of herpes simplex virus in cultures of dissociated human nervous tissue. Acta Virol., 16, 25–30PubMedGoogle Scholar
  46. 46.
    Dix, R. D., Waitzman, D. M., Follansbee, S., Pearson, B. S., Mendelson, T., Smith, P., Davis, R. L. and Mills, J. (1985). Herpes simplex virus type 2 encephalitis in two homosexual men with persistent lymphadenopathy. Ann. Neurol., 17, 203–6PubMedCrossRefGoogle Scholar
  47. 47.
    Booss, J. and Esiri, M. M. (1986). Viral Encephalitis. Pathology, Diagnosis and Management. ( Oxford: Blackwell Scientific Publications )Google Scholar
  48. 48.
    McLennan, J. L. and Darby, G. C. (1980). Herpes simplex virus latency. The cellular location of virus in dorsal root ganglia and the fate of the infected cell following virus activation. J. Gen. Virol., 51, 233–43PubMedCrossRefGoogle Scholar
  49. 49.
    Kennedy, P. G. E., Al-Saadi, S. A. and Clements, G. B. (1983). Reactivation of latent herpes simplex virus from dissociated identified dorsal root ganglion cells in culture. J. Gen. Virol., 64, 1629–35PubMedCrossRefGoogle Scholar
  50. 50.
    Vahlne, A., Nystrom, B., Sandberg, M., Hamberger, A. and Lycke, E. (1978). Attachment of herpes simplex virus to neurones and glial cells. J. Gen. Virol., 44, 359–71CrossRefGoogle Scholar
  51. 51.
    Wigdahl, B., Smith, C. A., Traglia, H. M. and Rapp, F. (1984). Herpes simplex virus latency in isolated human neurones. Proc. Natl. Acad. Sci. USA, 81, 6217–21PubMedCrossRefGoogle Scholar
  52. 52.
    Kennedy, P. G. E., LaThangue, N. B., Chan, W. L. and Clements, G. B. (1985). Cultured human neural cells accumulate a heat-shock protein during acute herpes simplex virus infection. Neurosci. Lett., 61, 321–6PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • P. G. E. Kennedy

There are no affiliations available

Personalised recommendations