Advertisement

Structure and function of the hepatic sinusoidal wall

  • L. Bouwens
  • A. Geerts
  • E. Wisse

Abstract

The hepatic blood capillaries, called sinusoids because they have a tortuous course, are lined by a wall of cells which, at the same time, form a barrier and a pathway for exchange between the blood and the hepatic parenchyma. This wall is composed of three different cell types: the endothelial cell, the Kupffer cell and the pit cell. Behind the sinusoidal lining, a fourth sinusoidal cell type occurs, the fat-storing or Ito cell, which will be discussed in another chapter. It has become clear that these cells serve a number of different functions important during both homoeostasis and pathological conditions1.

Keywords

Kupffer Cell Transmission Electron Micrograph Sinusoidal Endothelial Cell Sinusoidal Endothelium Hepatic Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wisse, E. and Knook, D. (1979) The investigation of sinusoidal cells: A new approach to the study of liver function. In Popper, H. and Schaffner, F. (eds.) Progress in Liver Diseases, 153–171. (New York: Grune and Stratton)Google Scholar
  2. 2.
    Wisse, E. (1970). An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J. Ultrastruct. Res., 31, 125–150PubMedCrossRefGoogle Scholar
  3. 3.
    Wisse, E., De Zanger, R., Charels, K., Van Der Smissen, P. and McCuskey, R. (1985). The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology, 5, 683–692PubMedCrossRefGoogle Scholar
  4. 4.
    Naito, M. and Wisse, E. (1978). Filtrating effect of endothelial fenestrations on chylomicron transport in the neonatal rat liver. Cell Tissue Res., 190, 371–382PubMedCrossRefGoogle Scholar
  5. 5.
    De Zanger, R. and Wisse, E. (1982). The filtration effect of rat liver fenestrated sinusoidal endothelium on the passage of (remnant) chylomicrons to the space of Disse. In Knook, D. and Wisse, E. (eds.) Sinusoidal Liver Cells, pp. 69–76. (Amsterdam: Elsevier Biomedical Press)Google Scholar
  6. 6.
    Fraser, R., Bosanquet, A. and Day, N. (1978). Filtration effect of chylomicrons by the liver may influence cholesterol metabolism and atherosclerosis. Atherosclerosis, 29, 113–123PubMedCrossRefGoogle Scholar
  7. 7.
    Wright, P., Smith, K., Day, W. et al. (1983). Small liver fenestrae may explain the susceptibility of rabbits to atherosclerosis. Atherosclerosis, 3, 344–348Google Scholar
  8. 8.
    Fraser, R., Bowler, L. and Day, W. (1980). Damage of rat liver sinusoidal endothelium by ethanol. Pathology, 12, 371–376PubMedCrossRefGoogle Scholar
  9. 9.
    Mak, K. and Lieber, C. (1984). Alterations in the endothelial fenestration in liver sinusoids of baboons fed alcohol: a scanning electron microscopical study. Hepatology, 4, 386–391PubMedCrossRefGoogle Scholar
  10. 10.
    Nopanitaya, W., Lamb, J., Grisham, J. and Carson, J. (1976). Effect of hepatic venous outflow obstruction on pores and fenestrations in sinusoidal endothelium. Br. J. Exp. Pathol., 57, 604–609PubMedCentralPubMedGoogle Scholar
  11. 11.
    Frenzel, H., Kremer, B., Richter, I. and Hucker, H. (1976). Der Einfluss des Perfusiondruckes bei der Perusionsfîxation auf die Feinstruktur der Lebersinusoide. Transmissionsund Rasterelectronenmikroskopische Untersuchung, Res. Exp. Med., 168, 229–241CrossRefGoogle Scholar
  12. 12.
    Fraser, R., Bowler, L., Day, W., Dobbs, B., Johnson, H. and Lee, D. (1980). High perfusion pressure damages the sieving ability of sinusoidal endothelium in rat livers, Br. J. Exp. Pathol., 61, 222–228PubMedCentralPubMedGoogle Scholar
  13. 13.
    Fraser, R., Bowler, L., De Zanger, R. and Wisse, E. (1982). Agents related to fibrosis, such as alcohol and CC14 acutely affect endothelial fenestrae which may cause fatty liver. In Gerlach, U., Pott, G., Rauterberg, J. and Voss, B. (eds.) Connective Tissue of the Normal and Fibrotic Human Liver, pp. 159–160. (Stuttgart: Georg Thieme Verlag)Google Scholar
  14. 14.
    Frenzel, H., Kremer, B. and Hucker, H. (1977). The liver sinusoids under various pathological conditions. A TEM and SEM study of rat liver after respiratory hypoxy, telecobalt-irradiation and endotoxin application. In Wisse, E. and Knook, D. (eds.) Kupffer Cells and other Sinusoidal Liver Cells, pp. 213–222. (Amsterdam: Elsevier Biomedical Press)Google Scholar
  15. 15.
    Praaning-Van Dalen, D., Brouwer, A. and Knook, D. (1981). Clearance capacity of rat liver Kupffer, endothelial and parenchymal cells. Gastroenterology, 81, 1036–1044PubMedGoogle Scholar
  16. 16.
    Praaning-Van Dalen, D., De Leeuw, A., Brouwer, A., De Ruiter, G. and Knook, D. (1982). Ultrastructural and biochemical characterization of endocytic mechanisms in rat liver Kupffer and endothelial cells. In Knook, D. and Wisse, E. (eds.) Sinusoidal Liver Cells, pp. 271–278, (Amsterdam: Elsevier Biomedical Press)Google Scholar
  17. 17.
    Steffan, A., Gendrault, J. and Kirn, A. (1986). Phagocytosis and surface modulation of fenestrated areas — two properties of murine endothelial liver cells (EC) involving microfilaments. In Kirn, A., Knook, D. and Wisse, E. (eds.) Cells of the Hepatic Sinusoid, pp. 483–488. (Rijswijk: Kupffer Cell Foundation)Google Scholar
  18. 18.
    Wisse, E. (1972). An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J. Ultrastruct. Res., 38, 528–562PubMedCrossRefGoogle Scholar
  19. 19.
    Steffan, A., Lecerf, F., Keller, F., Cinqualbre, J. and Kirn, A. (1981). Biologie generale: isolement et culture de cellules endotheliales de foie humain et murin. Comptes Rendus Acad. Sci. Paris, 292, 809–815Google Scholar
  20. 20.
    Brouwer, A., Barelds, R. and Knook, D. (1985). Age-related changes in the endocytic capacity of rat liver Kupffer and endothelial cells. Hepatology, 3, 362–366CrossRefGoogle Scholar
  21. 21.
    Van Der Laan-Klamer, S., Brouwer, A., Atmosoerodjo-Briggs, J., Harms, G. and Hardonk, M. (1986). Binding of heterologous immune complexes to cultured rat liver endothelial cells. In Kirn, A., Knook, D. and Wisse, E. (eds.) Cells of the Hepatic Sinusoid, pp. 119–124. (Rijswijk: Kupffer Cell Foundation)Google Scholar
  22. 22.
    Ghitescu, L. and Fixman, A. (1984). Surface charge distribution on the endothelial cell of liver sinusoids. J. Cell. Biol., 99, 639–647PubMedCrossRefGoogle Scholar
  23. 23.
    Praaning-Van Dalen, D., De Leeuw, A., Brouwer, A. and Knook, D. (1982). Endocytosis by sinusoidal liver cells: summary of a round table discussion. In Knook, D. and Wisse, E. (eds.) Sinusoidal Liver Cells, pp. 517–524. (Amsterdam: Elsevier Biomedical Press)Google Scholar
  24. 24.
    Steffan, A., Gendrault, J., McCuskey, R., McCuskey, P. and Kirn, A. (1986). Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology, 6, 830–836PubMedCrossRefGoogle Scholar
  25. 25.
    Wisse, E. (1974). Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J. Ultrastruct. Res., 46, 393–426PubMedCrossRefGoogle Scholar
  26. 26.
    Singer, J., Adlersberg, L., Hoenig, E., Ende, E. and Tchorsch, Y. (1969). Radiolabeled latex particles in the investigation of phagocytosis in vivo: clearance curves and histological observations. J. Reticuloend. Soc., 6, 561–589Google Scholar
  27. 27.
    Singer, J., Adlersberg, L. and Sadek, M. (1972). Long-term observation of intravenously injected colloidal gold in mice. J. Reticuloend. Soc., 12, 658–671Google Scholar
  28. 28.
    Gendrault, J., Steffan, A., Bingen, A. and Kirn, A. (1980). Uptake of frog virus 3 by Kupffer cells in vivo and in vitro. In Leihr, H. and Grun, M. (eds). The Reticuloendothelial System and the Pathogenesis of Liver Disease, pp. 221–228. (Amsterdam: Elsevier)Google Scholar
  29. 29.
    Jones, E. and Summerfield, J. (1982). Kupffer cells. In Arias, I., Popper, H., Schachter, D. and Shafritz, D. (eds). The Liver: Biology and Pathology, pp. 507–523. (New York: Raven Press)Google Scholar
  30. 30.
    Meis, J., Verhave, J., Jap, P. and Meuwissen, J. (1982). The role of Kupffer cells in the trapping of malarial sporozoites in the liver and the subsequent infection of hepatocytes. In Knook, D. and Wisse, E. (eds). Sinusoidal Liver Cells, pp.429–436. (Amsterdam: Elsevier Biomedical Press)Google Scholar
  31. 31.
    Roos, E. and Dingemans, K. (1977). Phagocytosis of tumor cells by Kupffer cells in vivo and in the perfused mouse liver. In Wisse, E. and Knook, D. (eds). Kupffer Cells and Other Liver Sinusoidal Cells, pp. 183–190. (Amsterdam: Elsevier Biomedical Press)Google Scholar
  32. 32.
    Dijkstra, J., Van Galen, W., Roerdink, F., Regts, D. and Scherphof, G. (1982). Uptake of liposomes by Kupffer cells in vitro. In Knook, D. and Wisse, E. (eds). Sinusoidal Liver Cells, pp. 297–304. (Amsterdam: Elsevier Biomedical Press)Google Scholar
  33. 33.
    Fillet, G., Cook, J. and Finch, C. (1974). Storage iron kinetics. VII. A biological model for reticuloendothelial iron transport. J. Clin. Invest., 53, 1527–1533PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Loegering, D. (1986). Review article: Kupffer cell complement receptor clearance function and host defense. Circ. Shock, 20, 321–333PubMedGoogle Scholar
  35. 35.
    Mathison, J. and Ulevitch, R. (1979). The clearance, tissue distribution and cellular localization of intravenously injected lipopolysaccharide in rabbits. J. Immunol., 123, 2133–2143PubMedGoogle Scholar
  36. 36.
    Ramadori, G., Hopf, U., Galanos, C., Freudenberg, M. and Meyer zum Buschenfelde, K. (1980). In vitro and in vivo reactivity of lipopolysaccharides and lipid A with parenchymal and non-parenchymal liver cells in mice. In Liehr, H. and Grun, M. (eds). The Reticuloendothelial System and the Pathogenesis of Liver Disease, pp. 285–294. (Amsterdam: Elsevier)Google Scholar
  37. 37.
    Maier, R. and Ulevitch, R. (1981). The response of isolated rabbit hepatic macrophages (H-M macrophage) to lipopolysaccharide (LPS). Circ. Shock, 8, 165–181PubMedGoogle Scholar
  38. 38.
    Praaning-Van Dalen, D., Brouwer, A. and Knook, D. (1976). Clearance capacity of rat liver Kupffer, endothelial and parenchymal cells. Gastroenterology, 70, 82–84Google Scholar
  39. 39.
    Ruiter, D., van Der Meulen, J., Brouwer, A. et al. (1981). Uptake by liver cells of endotoxin following its intravenous injection. Lab. Invest., 45, 38–45PubMedGoogle Scholar
  40. 40.
    Freudenberg, M., Freudenberg, N. and Galanos, C. (1982). Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br. J. Exp. Pathol., 63, 56–65PubMedCentralPubMedGoogle Scholar
  41. 41.
    Nolar, J. and Camara, P. (1982). Endotoxin, sinusoidal cells, and liver injury. In Popper, H. and Schaffner, F. (eds). Progress in Liver Diseases, Vol. 7, pp. 361–376. (New York: Grune and Stratton)Google Scholar
  42. 42.
    Birmelin, M. and Decker, K. (1984). Synthesis of prostanoids and cyclic nucleotides by phagocytosing rat Kupffer cells. Eur. J. Biochem., 142, 219–225PubMedCrossRefGoogle Scholar
  43. 43.
    Decker, K., Dieter, P., Henninger, H., Eyhorn, S. and Birmelin, M. (1986). The arachidonoids released by rat Kupffer cells in response to phagocytic stimuli. In Kirn, A., Knook, D. and Wisse, E. (eds). Cells of the Hepatic Sinusoid, pp. 65–70. (Rijswijk: Kupffer Cell Foundation)Google Scholar
  44. 44.
    Bauer, J., Birmelin, M., Northoff, G. et al. (1984). Induction of rat alpha 2-macroglobulin in vivo and in hepatocyte primary cultures: synergistic action of glucocorticoids and a Kupffer cell-derived factor. FEBS Lett., 177, 89–94PubMedCrossRefGoogle Scholar
  45. 45.
    Bauer, J., Tran-Thi, T., Northoff, H. et al (1986). The acute-phase induction of alpha 2-macroglobulin in rat hepatocyte primary cultures: action of a hepatocyte-stimulating factor, triiodothyronine and dexamethasone. Eur. J. Cell. Biol., 40, 86–93PubMedGoogle Scholar
  46. 46.
    Wolosky, B. and Fuller, G. (1985). Identification and partial characterization of hepatocyte-stimulating factor from leukemia cell lines: comparison with interleukin-1. Proc. Natl. Acad. Sci. USA, 82, 1443CrossRefGoogle Scholar
  47. 47.
    Neumann, C. and Sorg, C. (1978). Immune interferon. II. Different cellular site for the production of murine macrophage migration inhibitory factor and interferon. Eur. J. Immunol., 8, 582–589PubMedCrossRefGoogle Scholar
  48. 48.
    Kirn, A., Gut, J. and Gendrault, J. (1982). Interaction of viruses with sinusoidal cells. In Popper, H. and Schaffner, F. (eds). Progress in Liver Diseases, Vol. 7, pp. 377–392. (New York: Grune and Stratton)Google Scholar
  49. 49.
    Decker, T., Lohmann-Matthes, M. and Gifford, G.E. (1987). Cell-associated necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol., 138, 957–962PubMedGoogle Scholar
  50. 50.
    Rogoff, T. and Lipsky, P. (1981), Role of the Kupffer cells in local and systemic immune responses. Gastroenterology, 80, 854–860PubMedGoogle Scholar
  51. 51.
    Ramadori, G., Dienes, H., Burger, R., Meuer, S., Rieder, H. and Meyer zum Buschenfelde, K. (1986). Expression of la-antigens on guinea pig Kupffer cells. Studies with monoclonal antibodies. J. Hepatol. 2, 208–217PubMedCrossRefGoogle Scholar
  52. 52.
    Bouwens, L., Baekeland, M. and Wisse, E. (1984). Importance of local proliferation in the expanding Kupffer cell population of rat liver after zymosan stimulation and partial hepatectomy. Hepatology, 4, 213–219PubMedCrossRefGoogle Scholar
  53. 53.
    Bouwens, L., Baekeland, M. and Wisse, E. (1986). Cytokinetic analysis of the expanding Kupffer-cell population in rat liver. Cell. Tissue Kinet., 19, 217–226PubMedGoogle Scholar
  54. 54.
    Bouwens, L., Knook, D. and Wisse, E. (1986). Local proliferation and extrahepatic recruitment of liver macrophages (Kupffer cells) in partial-body irradiated rats. J. Leukocyte Biol., 39, 687–697PubMedGoogle Scholar
  55. 55.
    Decker, T., Kiderlen, A. and Lohmann-Matthes, M. (1985). Liver macrophages (Kupffer cells) as cytotoxic effector cells in extracellular and intracellular cytotoxicity. Infect. Immun., 50, 358–364PubMedCentralPubMedGoogle Scholar
  56. 56.
    Daemen, T., Veninga, A., Roerdink, F. and Scherphof, G. (1986). In vitro activation of rat liver macrophages to tumoricidal activity by free or liposome-encapsulated muramyl dipeptide. Cancer Res., 46, 4330–4335PubMedGoogle Scholar
  57. 57.
    Cohen, S., Salazar, D., Von Muenchhausen, W., Werner-Wasik, M. and Nolan, J. (1985). Natural antitumor defense system of the murine liver. J. Leukocyte Biol., 37, 559–569PubMedGoogle Scholar
  58. 58.
    Maker, M., Friedrich, E. and Suss, R. (1986). Liver as a tumor cell killing organ: Kupffer cells and natural killers. Cancer Res., 46, 3055–3060Google Scholar
  59. 59.
    Xu, Z., Bucana, C. and Fidler, I. (1984). In vitro activation of murine Kupffer cells by lymphokines or endotoxins to lyse syngeneic tumour cells. Am. J. Pathol., 117, 372–379PubMedGoogle Scholar
  60. 60.
    Pearson, H., Anderson, J., Chamberlain, J. and Bell, P. (1986). The effect of Kupffer cell stimulation or depression on the development of liver metastases in the rat. Cancer Immunol. Immunother., 23, 214–216PubMedCrossRefGoogle Scholar
  61. 61.
    Sawyer, R., Moon, R. and Beneke, E. (1981). Trapping and killing of Candida albicans by Corynebacterium parvum-activated livers. Infect. Immun., 32, 945–950PubMedCentralPubMedGoogle Scholar
  62. 62.
    Lepay, D., Steinman, R., Nathan, C., Murray, H. and Cohn, Z. (1985). Liver macrophages in murine Listeriosis. Cell-mediated immunity is correlated with an influx of macrophages capable of generating reactive oxygen intermediates. J. Exp. Med., 161, 1503–1512PubMedCrossRefGoogle Scholar
  63. 63.
    Tanner, A., Keyhani, A. and Wright, R. (1983). The influence of endotoxin in vitro on hepatic macrophage lysosomal enzyme release in different rat models of hepatic injury. Liver, 3, 151–160PubMedCrossRefGoogle Scholar
  64. 64.
    Bouwens, L. and Wisse, E. (1985). Proliferation, kinetics, and fate of monocytes in rat liver during a zymosan-induced inflammation. J. Leukocyte Biol., 37, 531–543PubMedGoogle Scholar
  65. 65.
    Deimann, W. and Fahimi, H. (1979). The appearance of transition forms between monocytes and Kupffer cells in the liver of rats treated with glucan. J. Exp. Med., 149, 883–897PubMedCrossRefGoogle Scholar
  66. 66.
    Bouwens, L., Baekeland, M., De Zanger, R. and Wisse, E. (1986). Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology, 6, 718–722PubMedCrossRefGoogle Scholar
  67. 67.
    Wisse, E. and Daems, W. (1970). Fine structural study on the sinusoidal lining cells of rat liver. In Van Furth, R. (ed.) Mononuclear Phagocytes, pp. 200–215. (Oxford: Blackwell)Google Scholar
  68. 68.
    Wisse, E., Van’t Noordende, J., Van der Meulen, J. and Daems, W. (1976). The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell. Tissue Res., 173, 423–435PubMedCrossRefGoogle Scholar
  69. 69.
    Kaneda, K. and Wake, K. (1983). Distribution and morphological characteristics of the pit cells in the liver of the rat. Cell. Tissue Res., 233, 485–505PubMedCrossRefGoogle Scholar
  70. 70.
    Kaneda, K., Dan, C. and Kaneda, K. (1983). Pit cells as natural killer cells. Biomed. Res.,4, 567–576Google Scholar
  71. 71.
    Timonen, T., Ortaldo, J. and Herberman, R. (1981). Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med., 153, 569–582PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Luini, W., Boraschi, D., Alberti, S., Aleotti, A. and Tagliabue, A. (1981). Morphological characterization of a cell population responsible for natural killer activity. Immunology, 43, 663–668PubMedGoogle Scholar
  73. 73.
    Reynolds, C., Timonen, T. and Herberman, R. (1981). Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells. J. Immunol., 127, 282–287PubMedGoogle Scholar
  74. 74.
    Bouwens, L., Remels, L., Baekeland, M., Van Bossuyt, H. and Wisse, E. (1987). Large granular lymphocytes or ‘Pit cells’ from rat liver: isolation, ultrastructural characterization and natural killer activity. Eur. J. Immunol., 17, 37–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • L. Bouwens
  • A. Geerts
  • E. Wisse

There are no affiliations available

Personalised recommendations