Absolute Population Estimates by Sampling a Unit of Habitat — Freshwater Habitats

  • T. R. E. Southwood


Phyla other than the Arthropoda are well represented in this habitat, but it is not intended in this chapter to detail the methods for the study of the microfauna of inland waters; these are described in works such as Welch (1948) and Edmondson & Winberg (1971); whilst sampling aspects are reviewed by Elliott (1971) and Elliott & Décamps (1973). In contrast to terrestrial habitats, major difficulties in making absolute estimates lie in actually taking a sample of a known unit, as well as in the separation of the animals from the media. The problems of extraction are similar to those in terrestrial habitats and reference should therefore be made to Chapters 4 and 5.


Artificial Substrate Outer Cylinder Terrestrial Habitat Larval Population Bottom Fauna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACKEFORS, H., 1971. A quantitative plankton sampler. Oikos 22, 114–8.CrossRefGoogle Scholar
  2. ALBRECHT, M.-L., 1959. Die quantitative Untersuchung der Bodenfauna fliessender Gewässer (Untersuchungsmethoden und Arbeitsergebnisse). Z. Fisch. (N.F.) 8, 481–550.Google Scholar
  3. ALLAN, I. R. H 1952. A hand-operated quantitative grab for sampling river beds. J. Anim. Ecol. 21, 159–60.CrossRefGoogle Scholar
  4. BATES, M., 1941. Field tudies of the anopheline mosquitoes of Albania. Proc. ent. Soc. Wash. 43, 37–58.Google Scholar
  5. BENFIELD, E. F., HENDRICKS, A. C. and CAIRNS, J., 1974. Proficiencies of two artificial substrates in collecting stream macroinvertebrates. Hydrobiologia 45, 431–40.CrossRefGoogle Scholar
  6. BRUT, N. W., 1955. New methods of collecting bottom fauna from shoals or rubble bottoms of lakes and streams. Ecology 36, 524–5.CrossRefGoogle Scholar
  7. BROWN, S. R., 1956. A piston sampler for surface sediments of lake deposits. Ecology 37, 611–13.CrossRefGoogle Scholar
  8. CALOW, P., 1972. A method for determining the surface area of stones to enable quantitative density estimates of littoral stone dwelling organisms to be made. Hydrobiologia 40, 37–50.CrossRefGoogle Scholar
  9. CHRISTIE, M, 1954. A method for the numerical study of larval populations of Anophelesgambiae and other pool-breeding mosquitoes. Ann. trop. Med. Parasit., Liverpool 48, 271–6.Google Scholar
  10. CLARKE, G. L. and BUMPUS, D F, 1940. The Plankton sampleran instrument for quantitative plankton investigations. Limnol. Soc. Amer. Spec. Publ. 5, 1–8.Google Scholar
  11. CROSET, H., PAPIEROK, B, RIOUX, J. A., GABINAUD, A., COUSSERANS, J. and ARNAUD, D., 1976. Absolute estimates of larval populations of culicid mosquitoes: comparison of capture-recapture removal and dipping methods. Ecological Entomology 1, 251–6.CrossRefGoogle Scholar
  12. CROSSMAN, J. S. and CAIRNS, J., 1974. A comparative study between two different artificial substrate samplers and regular sampling techniques. Hydrobiologia 44, 517–22.CrossRefGoogle Scholar
  13. CUMMINS, K. W., 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotie waters. Am. Midi Nat. 67, 477–503.CrossRefGoogle Scholar
  14. DENDY, J. S., 1944. The fate of animals in streamdrift when carried into lakes. Ecol. Monogr. 14, 333–57.CrossRefGoogle Scholar
  15. DISNEY, R. H. L., 1972. Observations on sampling pre-imaginal populations of blackflies (Dipt., Simuliidae) in West Cameroon. Bull. ent. Res. 61, 485–503.CrossRefGoogle Scholar
  16. DUMAS, F, 1962. Deep water archaeology, London.Google Scholar
  17. DUNN, D. R, 1961. The bottom fauna of Llyn Tegid (Lake Bala), Merionethshire. J. anim. Ecol. 31, 2670–81.Google Scholar
  18. ECKBLAD, J. W., 1973. Population studies of three aquatic gastropods in an intermittent backwater. Hydrobiologia 41, 199–219.CrossRefGoogle Scholar
  19. EDMONDSON, W. T., and WINBERG, G. G (eds:) 1971. A manual on methods for the assessment of secondary productivity in freshwaters. I.B.P. Handbook 17. 358 pp., Blackwells, Oxford and London.Google Scholar
  20. EKMAN, S., 1911. Die Bodenfauna des Vättern, qualitativ und quantitativ untersucht. Int. Revue ges. Hydrobiol. Hydrogr. 7, 146–204.CrossRefGoogle Scholar
  21. ELGMORK, K, 1962. A bottom sampler for soft mud. Hydrobiologia 20, 167–72.CrossRefGoogle Scholar
  22. ELLIOTT, J. M., 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Sci. Publ. Freshw. Biol. Assoc. 25, 148 pp.Google Scholar
  23. ELLIOTT, J. M. and DÉCAMPS, H, 1973. Guide pour l’analyse statistique des échantillons d’invertébrés benthiques. Annls. limnol. 9, 79–120.CrossRefGoogle Scholar
  24. FLANNAGAN, J. F., 1970. Efficiencies of various grabs and corers in sampling freshwater benthos. J. Fish. Res. Bd. Canada 27, 1691–1700.CrossRefGoogle Scholar
  25. FORD, J. B., 1962. The vertical distribution of larvae Chironomidae (Dipt.) in the mud of a stream. Hydrobiologia 19, 262–72.CrossRefGoogle Scholar
  26. FROST, S., 1971. Evaluation of a technique for sorting and counting stream invertebrates. Can. J. Zool. 49, 878–83.Google Scholar
  27. FROST, S., HUNI, A. and KERSHAW, W. E., 1971. Evaluation of a kicking technique for sampling stream bottom fauna. Can. J. Zool. 49, 167–73.CrossRefGoogle Scholar
  28. FUJITA, H., 1956. The collection efficiency of a plankton net. Res. Popul. Ecol. 3, 8–15.CrossRefGoogle Scholar
  29. GERKING, S. D., 1957. A method of sampling the littoral macrofauna and its application. Ecology, 38, 219–26.CrossRefGoogle Scholar
  30. GLIME, J. M. and CLEMONS, R. M., 1972. Species diversity of stream insects on Fontinalis spp. compared to diversity on artificial substrates. Ecology 53, 458–64.CrossRefGoogle Scholar
  31. GOODWIN, M. H. and EYLES, D. E., 1942. Measurements of larval populations of Anopheles quadrimaculatus, Say Ecology 23, 376.CrossRefGoogle Scholar
  32. GOULDER, R., 1971. Vertical distribution of some ciliated protozoa in two freshwater sediments. Oikos 22, 199–203.CrossRefGoogle Scholar
  33. GRIFFITH, R. E., 1957. A portable apparatus for collecting horizontal plankton samples. Ecology 38, 538–40.CrossRefGoogle Scholar
  34. GULLIKSEN, B., and DERAS, K. M., 1975. A diveroperated suction sampler for fauna on rocky bottoms. Oikos 26, 246–9.CrossRefGoogle Scholar
  35. HAMILTON, A. L., BURTON, W and FLANNAGAN, J. F., 1970. A multiple corer for sampling profundal benthos. J. Fish. Res. Bd. Canada 27, 1867–9.CrossRefGoogle Scholar
  36. HESS, A. D., 1941. New limnological sampling equipment. Limnol. Soc. Amer. Spec. Publ. 6, 1–15.Google Scholar
  37. HIGER, A. L. and KOLIPINSKI, M. C., 1967. Pull-up trap: a quantitative device for sampling shallow-water animals. Ecology 48, 1008–9.CrossRefGoogle Scholar
  38. HOLOPAINEN, I. J. and SARVALA, J., 1975. Efficiencies of two corers in sampling soft-bottom invertebrates. Ann. Zoo. Fenn 12, 280–4.Google Scholar
  39. HUCKLEY, P., 1975. An apparatus for subdividing benthos samples. Oikos 26, 92–6.CrossRefGoogle Scholar
  40. HYNES, H.B.N., 1971. Benthos of flowing water. In Edmondson, W. I. & Winberg, G. G. (eds.). l.B.P. Handbook 17, 66–80. Blackwells, Oxford and London.Google Scholar
  41. JAMES, H. G. and NICHOLLS, C. F., 1961. A sampling cage for aquatic insects. Can. Ent. 93, 1053–5.CrossRefGoogle Scholar
  42. JENKIN, B. M. and MORTIMER, C. H., 1938. Sampling lake deposits. Nature 142, 834.CrossRefGoogle Scholar
  43. KAJAK, Z, 1963. Analysis of quantitative benthic methods. Ekologia Polska A 11, 1–56.Google Scholar
  44. KAJAK, Z, 1971. Benthos of standing water. In Edmondson, W. T. & Winberg, G. G. (ed.) I.B.P. Handbook 17, 25–65. Blackwells, Oxford and London.Google Scholar
  45. KAJAK, Z., DUSOGE, K. and PREJS, A., 1968. Application of the flotation technique to assessment of absolute numbers of benthos. Ekologia Polska 16, 607–20.Google Scholar
  46. KARLSSON, M., BOHLIN, T. and STENSON, J., 1976. Core sampling and flotation: two methods to reduce costs of a chironomid population study. Oikos 27, 336–8.CrossRefGoogle Scholar
  47. KROGER, R. L, 1972. Underestimation of standing crop by the Surber sampler. Limnol. Oceanogr. 17, 475–8.CrossRefGoogle Scholar
  48. KROGER, R. L., 1974. Invertebrate drift in the Snake River, Wyoming. Hydrobiologia 44, 369–80.CrossRefGoogle Scholar
  49. LISITSYN, A. P. and UDINTSEV, G. B., 1955. New model dredges. [In Russian.] Trudy vses. gidrobiol Obsch. 6, 217–22.Google Scholar
  50. LIVINGSTON, D. A., 1955. A lightweight piston sampler for lake deposits. Ecology 36, 137–9.CrossRefGoogle Scholar
  51. LONGHURST, A. R., 1959. The sampling problem in benthic ecology. Proc. ft. Z. ecol. Soc. 6, 8–12.Google Scholar
  52. MACAN, T. T., 1958. Methods of sampling the bottom fauna in stony streams. Mitt. int. Verein. theor. angew. Limnol. 8, 1–21.Google Scholar
  53. MACKEY, A. P., 1972. An air-lift for sampling freshwater benthos. Oikos 23, 413–5.CrossRefGoogle Scholar
  54. MCCAULEY, V. J. E., 1975. Two new quantitative samplers for aquatic phytomac-rofauna. Hydrobiologia 47, 81–9.CrossRefGoogle Scholar
  55. MASON, W. T., WEBER, C. I., LEWIS, P. A. and JULIAN, E. C., 1973. Factors affecting the performance of basket and multiplate macro-invertebrate samplers. Freshwater Biol, 3, 409–36.CrossRefGoogle Scholar
  56. MILBRINK, G., 1971. A simplified tube bottom sampler. Oikos 22, 260–3.CrossRefGoogle Scholar
  57. MILBRINK, G. and WIEDERHOLM, T., 1973. Sampling efficiency of four types of mud bottom sampler. Oikos 24, 479–82.CrossRefGoogle Scholar
  58. MOON, H. P., 1935. Methods and apparatus suitable for an investigation of the littoral region of Oligotrophic Lakes, Int. Revue ges. Hydrobiol. Hydrogr. 32, 319–3.Google Scholar
  59. MORTIMER, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. Ill and IV. J. Ecol. 30, 147–201.CrossRefGoogle Scholar
  60. MUNDIE, J. H., 1956. A bottom sampler for inclined rock surfaces in lakes. J. Anim. Ecol 25, 429–32.CrossRefGoogle Scholar
  61. NEEDHAM, P. R. and USINGER, R. L., 1956. Variability in macrofauna of a single riffle in Prosser creek, California, as indicated by the Surber sampler. Hilgardia 24(14), 383–409.Google Scholar
  62. NEGUS, C. L., 1966. A quantitative study of growth and production of unionid mussels in the River Thames at Reading. J. Anim. Ecol. 35, 513–32.CrossRefGoogle Scholar
  63. NEILL, R. M, 1938. The food and feeding of the brown trout (Salmo trutta L.) in relation to the organic environment. Trans. R. Soc. Edinb. 59, 481–520.Google Scholar
  64. PEARSON, R. G., LITTERICK, M. R. and JONES, N V, 1973. An air-lift for quantitative sampling of the benthos. Freshwater Biol. 3, 309–15.CrossRefGoogle Scholar
  65. PETERSEN, C. G. J., 1911. Valuation of the sea. I Rep. Dan. biol. Stn 20, 1–76.Google Scholar
  66. REISH, D. J., 1959. Modification of the Hayward orange peel bucket for bottom sampling. Ecology 40, 502–3.CrossRefGoogle Scholar
  67. RICKER, W. E., 1938. On adequate quantitative sampling of the pelagic net plankton of a lake. J. Fish. Res. Bd Can. 4, 19–32.CrossRefGoogle Scholar
  68. ROWLEY, J. R and DAHL, A, 1956. Modifications in design and use of the Livingstone piston sampler. Ecology 37, 849–51.CrossRefGoogle Scholar
  69. SCOTT, D., 1958. Ecological studies on the Trichoptera of the River Dean, Cheshire. Arch. Hydrobiol. 54, 340–92.Google Scholar
  70. SCOTT, D and RUSHFORTH, J M., 1959. Cover on river bottoms. Nature 183, 836–7.CrossRefGoogle Scholar
  71. SHAPIRO, J, 1958. The core-freezer-a new sampler for lake sediments. Ecology 39, 758.CrossRefGoogle Scholar
  72. SMITH, W. and MCINTYRE, A. D., 1954. A spring-loaded bottom-sampler. J. mar. biol. Ass. U.K. 33, 257–64.CrossRefGoogle Scholar
  73. SURBER, E W., 1936. Rainbow trout and bottom fauna production in one mile of stream. Trans. Am. Fish. Soc. 66, 193–202.CrossRefGoogle Scholar
  74. TONOLLI, V., 1971. Methods of collection. Zooplankton. In Edmondson. W.T. & Winberg, G. G. (eds.) I.B.P. Handbook 17, 1–20. Blackwells, Oxford and London.Google Scholar
  75. ULFSTRAND, S., 1968. Benthic animal communities in Lapland streams. Oikos (suppl.) 10, 1–120.Google Scholar
  76. USINGER, R. L. and NEEDHAM, P. R., 1954. A plan for the biological phases of the periodic stream sampling program (Mimeographed) Final Rep. to Calif. St. Wat. Pollution Cont. Bd. 59 pp.Google Scholar
  77. USINGER, R. L. and NEEDHAM, P R, 1956. A drag-type riffle-bottom sampler. Progve Fish. Cult. 18, 42–44.CrossRefGoogle Scholar
  78. VALLENTYNE, J. R, 1955. A modification of the Livingstone piston sampler for lake deposits. Ecology 36, 139–41.CrossRefGoogle Scholar
  79. WATERS, T. F. and KNAPP, R. J., 1961. An improved stream bottom fauna sampler. Trans. Am. Fish. Soe. 90, 225–6.CrossRefGoogle Scholar
  80. WELCH, H. E. and JAMES, H G., 1960. The Belleville trap for quantitative samples of mosquito larvae. Mosquito News 20, 23–6.Google Scholar
  81. WELCH, P. S., 1948. Limnological methods. 381 pp., McGraw-Hill, New York.Google Scholar
  82. WENE, G and WICKLIFF, E L., 1940. ‘Basket’methodofbottomsampling. Can. Ent. 72, 131–5.CrossRefGoogle Scholar
  83. WICKSTEAD, J., 1953. A new apparatus for the collection ofbottom plankton. J. mar. biol. Ass. U.K. 32, 347–55.CrossRefGoogle Scholar
  84. WIGLEY, R L, 1967. Comparative efficiencies of van Veen & Smith-Mclntyre grab samplers as revealed by motion pictures. Ecology 48, 168–9.CrossRefGoogle Scholar
  85. WILDING, J. L., 1940. A new square-foot aquatic sampler. Limnol. Soc. Am. Spec. Publ. 4, 1–4.Google Scholar
  86. WILLIAMS, T. R. and OBENG, L., 1962. A comparison of two methods of estimating changes in Simulium larval populations, with a description of a new method. Ann. trop. Med. Parasit., Liverpool 56, 359–61.Google Scholar
  87. WOLCOTT, R. H., 1901. A modification of the Birge collecting net. Joppl. Microsc. Lab. Meth. 4(8), 1407–9.Google Scholar
  88. WOLFE, L. S. and PETERSON, D. G., 1958. A new method to estimate levels of infestations of black-fly larvae (Diptera: Simulidae) Can. J. Zool. 36, 863–7.CrossRefGoogle Scholar

Copyright information

© T. R. E. Southwood 1978

Authors and Affiliations

  • T. R. E. Southwood
    • 1
  1. 1.University of OxfordUK

Personalised recommendations