Abstract

Measurements of changes in sample mass with temperature are made using a thermobalance. This is a combination of a suitable electronic microbalance with a furnace and associated temperature programmer. The balance should be in a suitably enclosed system so that the atmosphere can be controlled (Fig. 3.1 and section 3.4).

Keywords

Quartz Crystal Lithium Niobate Curie Point Crystal Face Balance Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czanderna, A. W. and Wolsky, S. P. (1980) Microweighing in Vacuum and Controlled Environments, Elsevier, Amsterdam.Google Scholar
  2. 2.
    Keattch, C. J. and Dollimore, D. (1975) An Introduction to Thermogravimetry, Heyden, London, 2nd edn.Google Scholar
  3. 3.
    Daniels, T. (1973) Thermal Analysis, Kogan Page, London.Google Scholar
  4. 4.
    Brown, M. E., Dollimore, D. and Galwey, A. K. (1980) Reactions in the Solid State, Comprehensive Chemical Kinetics, Vol. 22, (eds. C. H. Bamford and C. F. H. Tipper), Elsevier, Amsterdam.Google Scholar
  5. 5.
    Termeulen, J. P., Van Empel, F. J., Hardon, J. J., Massen, C. H. and Poulis, J. A. (1972) Prog. Vacuum Microbalance Techniques, Vol. 1, (eds. T. Gast and E. Robens), Heyden, London, p. 41.Google Scholar
  6. 6.
    Boersma, F. and Van Empel, F. J. (1975) Prog. Vacuum Microbalance Techniques, Vol. 3, (eds. C. Eyraud and M. Escoubes), Heyden, London, p. 9.Google Scholar
  7. 7.
    Henderson, D. E., DiTaranto, M. B., Tonkin, W. G., Ahlgren, D. J., Gatenby, D. A. and Shum, T. W. (1982) Anal. Chem., 54, 2067.CrossRefGoogle Scholar
  8. 8.
    Okhotnikov, V. B. and Lyakhov, N. Z. (1984) J. Solid State Chem., 53, 161.CrossRefGoogle Scholar
  9. 9.
    Offringa, J. C. A., de Kruif, C. G., van Ekeren, P. J. and Jacobs, M. G. H. (1983) J. Chem. Thermodyn., 15, 681.CrossRefGoogle Scholar
  10. 10.
    Mulder, B. J. (1984) J. Phys. E: Sci. Instrum., 17, 119.CrossRefGoogle Scholar
  11. 11.
    Braddick, H. J. J. (1963) The Physics of Experimental Method, Chapman and Hall, London, 2nd edn, p. 145.Google Scholar
  12. 12.
    Kishi, A., Takaoka, K. and Ichihasi, M. (1977) Thermal Analysis, Proc. 5th ICTA, (ed. H. Chihara), Heyden, London, p. 554.Google Scholar
  13. 13.
    Maesono, A., Ichihasi, M., Takaoka, K. and Kishi, A. (1980) Thermal Analysis, Proc. 6th ICTA, (ed. H. G. Wiedemann), Birkhauser, Basel, Vol. 1, p. 195.Google Scholar
  14. 14a.
    Karmazin, E., Barhoumi, R., Satre, P. and Gaillard, F. (1985) J. Thermal Anal., 30, 43;CrossRefGoogle Scholar
  15. 14b.
    Karmazin, E., Barhoumi, R., Satre, P. and Gaillard, F. (1984) J. Thermal Anal., 29, 1269.Google Scholar
  16. 15.
    Karmazin, E., Barhoumi, R. and Satre, P. (1985) Thermochim. Acta, 85, 291.CrossRefGoogle Scholar
  17. 16.
    Cielo, P. (1985) J. Thermal Anal., 30, 33.CrossRefGoogle Scholar
  18. 17.
    Steinheil, E. (1972) Prog. Vacuum Microbalance Techniques, Vol. 1, (eds. T. Gast and E. Robens), Heyden, London, p. 111.Google Scholar
  19. 18.
    Robens, E. (1985) Vacuum, 35, 1.CrossRefGoogle Scholar
  20. 19.
    Newkirk, A. E. (1971) Thermochim. Acta, 2, 1.CrossRefGoogle Scholar
  21. 20a.
    Garn, P. D. and Alamalhoda, A. A. (1985) Thermochim. Acta, 92, 833;CrossRefGoogle Scholar
  22. 20b.
    Garn, P. D. and Alamalhoda, A. A. (1982) Thermal Analysis, Proc. 7th ICTA, (ed. B. Miller), Wiley, New York, Vol. 1, p. 436.Google Scholar
  23. 21.
    Garn, P. D. and Kenessy, H. E. (1981) J. Thermal Anal., 20, 401.CrossRefGoogle Scholar
  24. 22.
    Koppius, A. M., Poulis, J. A., Massen, C. H. and Jansen, P. J. A. (1972) Prog. Vacuum Microbalance Techniques, Vol. 1, (eds. T. Gast and E. Robens), Heyden, London, p. 181.Google Scholar
  25. 23.
    Schurman, J. W., Massen, C. H. and Poulis, J. A. (1972) Prog. Vacuum Microbalance Techniques, Vol. 1, (eds. T. Gast and E. Robens), Heyden, London, p. 189.Google Scholar
  26. 24.
    Cox, M. G. C., McEnaney, B. and Scott, V. D. (1973) Prog. Vacuum Microbalance Techniques, Vol. 2, (eds. S. C. Bevan, S. J. Gregg and N. D. Parkyns), Heyden, London, p. 27.Google Scholar
  27. 25.
    Oswald, H. R. and Wiedemann, H. G. (1977) J. Thermal Anal., 12, 147.CrossRefGoogle Scholar
  28. 26.
    Boldyrev, V. V., Bulens, M. and Delmon, B. (1979) The Control of the Reactivity of Solids, Elsevier, Amsterdam.Google Scholar
  29. 27.
    Norem, S. D., O’Neill, M. J. and Gray, A. P. (1970) Thermochim. Acta., 1, 29.CrossRefGoogle Scholar
  30. 28.
    Elder, J. P. (1982) Thermochim. Acta, 52, 235.CrossRefGoogle Scholar
  31. 29.
    Duval, C. (1963) Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, 2nd edn.Google Scholar
  32. 30a.
    Liptay, G. (ed.) (1971) Atlas of Thermoanalytical Curves, Vol. 1, and Cumulative Index, Heyden, London.Google Scholar
  33. 30b.
    Liptay, G. (ed.) (1973) Atlas of Thermoanalytical Curves, Vol. 2, and Cumulative Index, Heyden, London.Google Scholar
  34. 30c.
    Liptay, G. (ed.) (1974) Atlas of Thermoanalytical Curves, Vol. 3, and Cumulative Index, Heyden, LondonGoogle Scholar
  35. 30d.
    Liptay, G. (ed.) (1975) Atlas of Thermoanalytical Curves, Vol. 4, and Cumulative Index, Heyden, LondonGoogle Scholar
  36. 30e.
    Liptay, G. (ed.) (1976) Atlas of Thermoanalytical Curves, Vol. 5 and Cumulative Index, Heyden, London.Google Scholar
  37. 31.
    Blaine, R. L. and Fair, P. G. (1983) Thermochim. Acta, 67, 233.CrossRefGoogle Scholar
  38. 32.
    Gallagher, P. K. and Gyorgy, E. M. (1986) Thermochim. Acta, 109, 193.CrossRefGoogle Scholar
  39. 33.
    Charsley, E. L., Warne, S. St. J. and Warrington, S. B. (1987) Thermochim. Acta, 114, 53.CrossRefGoogle Scholar

Copyright information

© Michael E. Brown 1988

Authors and Affiliations

  • Michael E. Brown
    • 1
  1. 1.Department of Chemistry and BiochemistryRhodes UniversityGrahamstownSouth Africa

Personalised recommendations