Advertisement

Evolution and variation in plant chloroplast and mitochondrial genomes

  • C. William BirkyJr.

Abstract

G. Ledyard Stebbins has had a pervasive influence on plant evolutionary biology, in part because of his broad interests. These include the evolution of genome structure, especially as it is seen by the methods of cytogenetics, phylogenetics, and asexual reproduction. Ledyard has not worked on the genomes of mitochondria or chloroplasts, but it is appropriate that these organelle genomes be included in a symposium honoring him. We know a great deal about the evolution of the structure of the chloroplast and mitochondrial DNA molecules, i.e. about organelle cytogenetics at the molecular level. Mitochondrial cytogenetics has proved to be much like nuclear cytogenetics in many respects. Chloroplast cytogenetics is a powerful tool for making phylogenetic inferences, as is nuclear cytogenetics. And of course organelles are essentially asexual genetic systems wherever they are found, even in sexually reproducing plants.

Keywords

Mitochondrial Genome Nuclear Gene Chloroplast Genome Chloroplast Gene Plant Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C. and Lansman, R. A. (1983) Polymorphism of mitochondrial DNA in populations of higher animals. in Evolution of Genes and Proteins (eds M. Nei and R. Koehn ), Sinauer Assoc., Sunderland, MA, pp. 147–64.Google Scholar
  2. Babbel, G. R. and Selander, R. K. (1974) Genetic variability in edaphically restricted and widespread plant species. Evolution, 28, 619–30.Google Scholar
  3. Backer, J. S. and Birky, C. W. Jr. (1985) The origin of mutant cells: mechanisms by which Saccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations. Curr. Genet., 9, 627–40.Google Scholar
  4. Banks, J. A. and Birky, C. W. Jr. (1985) Chloroplast DNA diversity is low in a wild plant, Lupinus texensis. Proc. Natl. Acad. Sci. USA, 82, 6950–4.Google Scholar
  5. Bedinger, P., and Walbot, V. (1986) DNA synthesis in purified maize mitochondria. Curr. Genet., 10, 631–7.Google Scholar
  6. Bendich, A. J. (1985) Plant mitochondrial DNA; Unusual variation on a common theme. in Genetic Flux in Plants (eds B. Hohn and E. S. Dennis ), Springer-Verlag, Vienna, pp. 111–38.Google Scholar
  7. Bertrand, H., Griffiths, A. J. F., Court, D. A. and Cheng, C. K. (1987) An extramitochondrial plasmid is the etiological precursor of kal DNA insertion sequences in the mitochondrial chromosome of senescent cells of Neurospora intermedia. Cell, 47, 829–37.Google Scholar
  8. Birky, C. W. Jr. (1983) Relaxed cellular controls and organelle heredity. Science, 222, 468–75.Google Scholar
  9. Birky, C. W. Jr., Fuerst, P. and Maruyama, T. (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics, 103, 513–27.Google Scholar
  10. Birley, A. J. and Croft, J. H. (1986) Mitochondrial DNAs and phylogenetic relationships. in DNA Systematics ( Vol. I. Evolution ) (ed. S. K. Dutta), CRC Press, Boca Raton, Fl. pp. 107–37.Google Scholar
  11. Bohnert, H. J. and Michalowski, C. (1988) Organization of plastid genomes. Am. J. Bot.,(in press).Google Scholar
  12. Borck, K. S., Walbot, V. (1982) Comparison of the restriction endonuclease digestion patterns of mitochondrial DNA from normal and male sterile cytoplasms of Zea Mays L. Genetics, 102, 100–26.Google Scholar
  13. Bowman, C. M., Bonnard, G. and Dyer, T. A. (1983) Chloroplast DNA variation between species of Triticum and Aegilops: location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor. Appl. Genet., 65, 247–62.Google Scholar
  14. Bowman, C. M. and Dyer, T. A. (1986) The location and possible evolutionary significance of small dispersed repeats in wheat ctDNA. Curr. Genet., 10, 93141.Google Scholar
  15. Braun, C. J. and Levings, C. S. III (1985) Nucleotide sequence of the F1-ATPase alpha subunit gene from maize mitochondria. Plant Physiol., 79, 571–7.Google Scholar
  16. Braun, C. J., Sisco, P. H., Sederoff, R. R. and Levings, C. S. III (1986) Characterization of inverted repeats from plasmid-like DNAs and the maize mitochondrial genome. Curr. Genet., 8, 625–30.Google Scholar
  17. Brennicke, A., Möller, S. and Blanz, P. A. (1985) The 18S and 5S ribosomal RNA genes in Oenothera mitochondria: Sequence rearrangements in the 18S and 5S rRNA genes of higher plants. Mol. Gen. Genet., 198, 404–10.Google Scholar
  18. Brown, G. G., Bell, G., Desrosiers, L. and Prussick, R. (1983) Variation in animal mitochondrial genes and gene products. in Endocytobiology II: Intacellular Space as Oligogenetic Ecosystem (eds H. E. A. Schenk and W. Schwemmler), de Gruyter, New York, pp. 247–61.Google Scholar
  19. Brown, G. G. and Simpson, M. V. (1982) Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proc. Natl. Acad. Sci. USA, 79, 3246–50.Google Scholar
  20. Brown, W. M. (1983) Evolution of mitochondrial DNA. in Evolution of Genes and Proteins (eds M. Nei and R. K. Koehn), Sinauer Assoc., Sunderland, MA., pp. 62-88.Google Scholar
  21. Brown, W. M. (1985) The mitochondrial genome of animals. in Molecular Evolutionary Genetics (ed. R. J. Maclntyre ), Plenum Press, New York, pp. 95–130.Google Scholar
  22. Brown, W. M., Prager, E. M., Wang, A. and Wilson, A. C. (1982) Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J. Mol. Evol., 18, 225–39.Google Scholar
  23. Cann, R. L., Brown, W. M. and Wilson, A. C. (1984) Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics, 106, 479–99.Google Scholar
  24. Carlson, J. E., Brown, G. L. and Kemble, R. J. (1986) In organello mitochondrial DNA and RNA synthesis in fertile and cytoplasmic male sterile Zea mays L. Curr. Genet., 11, 151–60.Google Scholar
  25. Chao, S., Sederoff, R. and Levings, C. S. III (1984) Nucleotide sequence and evolution of the 18S ribosomal RNA gene in maize mitochondria. Nuc. Acids Res., 12, 6629–44.Google Scholar
  26. Chiu, W.-L. and Sears, B. B. (1985) Recombination between chloroplast DNAs does not occur in sexual crosses of Oenothera. Mol. Gen. Genet., 198, 525–8.Google Scholar
  27. Clegg, M. T., Brown, A. H. D. and Whitfeld, P. R. (1984) Chloroplast DNA diversity in wild and cultivated barley. Genet. Res., 43, 339–43.Google Scholar
  28. Clegg, M. T., Rawson, J. R. Y. and Thomas, K. (1983) Chloroplast DNA evolution in pearl millet and related species. Genetics, 106, 449–61.Google Scholar
  29. Dawson, A. J., Hodge, T. P., Isaac, P. G., Leaver, C. J., Lonsdale, D. M. (1986) Location of the genes for cytochrome oxidase subunits I and II, apocytochrome b, alpha-subunit of the F1-ATPase and the ribosomal RNA genes on the mitochondrial genome of maize (Zea mays L.). Curr. Genet., 10, 561–4.Google Scholar
  30. Dewey, R. E., Schuster, A. M., Levings, C. S. III, Timothy, D. H. (1985) Nucleotide sequence of Fo-ATPase proteolipid (subunit 9) gene of maize mitochondria. Proc. Natl. Acad. Sci. USA, 82, 1015–19.Google Scholar
  31. Dron, M., Hartmann, C., Rode, A. and Sevignac, M. (1985) Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome of Brassica oleracea. Nuc. Acids Res., 13, 8603–10.Google Scholar
  32. Eckenrode, V. K., Arnold, J., Meagher, R. B. (1985) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J. Mol. Evol., 21, 259–69.Google Scholar
  33. Edwards, K. and Kossel, H. (1981) The rRNA operon from Zea mays chloroplasts: Nucleotide sequence of 23S rDNA and its homology with E. coli rDNA. Nuc. Acids Res., 9, 2853–69.Google Scholar
  34. Flavell, R. (1980) The molecular characterization and organization of plant chromosomal DNA sequences. Ann. Rev. Plant Physiol., 31, 569–96.Google Scholar
  35. Forde, B. G. and Leaver, C. J. (1980) Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc. Natl. Acad. Sci. USA, 77, 418–22.Google Scholar
  36. Forde, B. G., Oliver, R. J. C. and Leaver, C. J. (1978) Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc. Natl. Acad. Sci. USA, 75, 3841–5.Google Scholar
  37. Fox, T. D. and Leaver, C. J. (1981) The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell, 26, 315–23.Google Scholar
  38. Grabau, E. A. (1985) Nucleotide sequence of the soybean mitochondrial 18S rRNA gene: evidence for a slow rate of divergence in the plant mitochondrial genome. Plant Mol. Biol., 5, 119–24.Google Scholar
  39. Grabau, E. A. (1986) Cytochrome oxidase subunit II gene is adjacent to an initiator methionine tRNA gene in soybean mitochondrial DNA. Curr. Genet., 11, 287–95.Google Scholar
  40. Hack, E. and Leaver, C. J. (1984) Synthesis of dicyclohexylcarbodiimide-binding proteolipid by cucumber (Cucumis sativus L.) mitochondria. Curr. Genet., 8, 537–42.Google Scholar
  41. Hamrick, J. L., Linhart, Y. B., Mitton, J. B. (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst., 10, 173–200.Google Scholar
  42. Hiesel, R. and Brennicke, A. (1983) Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron. EMBO J., 2, 2173–8.Google Scholar
  43. Hixson, J. E. and Brown, W. M. (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. Mol. Biol. Evol., 3, 1–18.Google Scholar
  44. Holwerda, B. C., Jana, S. and Crosby, W. L. (1986) Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum. Genetics, 114, 1271–91.Google Scholar
  45. Howe, C. J. (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr. Genet., 10, 139–45.Google Scholar
  46. Hughes, N. F. (1977) Palaeo-succession of earliest angiosperm evolution. Bot. Rev., 43, 105–27.Google Scholar
  47. Isaac, P. G., Brennicke, A., Dunbar, S. M. and Leaver, C. J. (1985) The mitochondrial genome of fertile maize (Zea mays L.) contains two copies of the gene encoding the alpha-subunit of the F1-ATPase. Curr. Genet., 10, 321–8.Google Scholar
  48. Isaac, P. G., Jones, V. P. and Leaver, C. J. (1985) The maize cytochrome c oxidase subunit I gene: sequence, expression and rearrangement in cytoplasmic male sterile plants. EMBO J., 4, 1617–23.Google Scholar
  49. Kao, T.-H., Moon, E. and Wu, R. (1984) Cytochrome oxidase subunit II gene of rice has an insertion sequence within the intron. Nuc. Acids Res., 12, 7305–15.Google Scholar
  50. Kemble, R. J., Gabay-Laughnan, S. and Laughnan, J. R. (1985) Movement of genetic information between plant organelles: mitochondria-nuclei. in Genetic Flux in Plants (eds B. Hohn and E. S. Dennis ), Springer-Verlag, New York, pp. 79–87.Google Scholar
  51. Krebbers, E. T., Larrinua, I. M., McIntosh, L. and Bogorad, L. (1982) The maize chloroplast genes for the ß and e subunits of the photosynthetic coupling factor CFI are fused. Nuc. Acids Res., 10, 4985–5002.Google Scholar
  52. Levings, C. S. III and Pring, D. R. (1977) Diversity of mitochondrial genomes among normal cytoplasms of maize. J. Hered., 68, 350–4.Google Scholar
  53. Li, W.-H., Luo, C.-C. and Wu, C.-I. (1985) Evolution of DNA sequences. in Molecular Evolutionary Genetics (ed. R. J. Maclntyre ), Plenum Press, New York, pp. 1–94.Google Scholar
  54. Link, G. and Langridge, U. (1984) Structure of the chloroplast gene for the precursor of the Mr 32 000 photosystem II protein from mustard (Sinapis alba L.) Nuc. Acids Res., 12, 945–58.Google Scholar
  55. Lonsdale, D. M. (1985) Movement of genetic material between the chloroplast and mitochondrion in higher plants. in Genetic Flux in Plants (eds B. Hohn and E. S. Dennis ), Springer-Verlag, New York, pp. 52–60.Google Scholar
  56. Lonsdale, D. M., Hodge, T. P. and Fauron, C. M.-R. (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nuc. Acids Res., 12, 9249–61.Google Scholar
  57. Manna, E. and Brennicke, A. (1985) Primary and secondary structure of 26S ribosomal RNA of Oenothera mitochondria. Curr. Genet, 9, 1505–16.Google Scholar
  58. Manna, E. and Brennicke, A. (1986) Site-specific circularisation at an intragenic sequence in Oenothera mitochondria. Mol. Gen. Genet., 203, 377–81.Google Scholar
  59. Matthews, B. F., Wilson, K. G. and DeBonte, L. R. (1984) Variation in culture, isoenzyme patterns and plastid DNA in the genus Daucus. In Vitro, 20, 38-44. Google Scholar
  60. McIntosh, L., Poulsen, C. and Bogorad, L. (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphatecarboxylase of maize. Nature, 288, 556–60.Google Scholar
  61. McLean, P. E. and Hanson, M. R. (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics, 112, 649–67.Google Scholar
  62. Medgyesy, P., Fejes, E. and Maliga, P. (1985) Interspecific chloroplast recombina- tion in a Nicotiana somatic hybrid. Proc. Natl. Acad. Sci. USA, 82, 6960–4.Google Scholar
  63. Messing, J., Carlson, J., Hagen, G., Rubenstein, I. and Olesen, A. (1984) Cloning and sequencing of the ribosomal RNA genes in maize: the 17S region. DNA, 3, 31–40.Google Scholar
  64. Michalowski, C., Breunig, K. D. and Bohnert, H. J. (1987) Points of rearrangements between plastid chromosomes: Location of protein coding regions on broad bean chloroplast DNA. Curr. Genet., 11, 265–74.Google Scholar
  65. Michel, F. and Lang, B. F. (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature, 316, 641–3.Google Scholar
  66. Mitra, R. and Bhatia, C. R. (1986) Repeated DNA sequences and polyploidy in cereal crops. in DNA Systematics, (Vol. II: Plants) (ed. S. K. Dutta), Boca Raton, FL, pp. 21-43Google Scholar
  67. Miyata, T., Hayashida, H., Kikuno, R., Hasegawa, M., Kobayashi, M. and Koike, K. (1982) Molecular clock of silent substitution: At least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J. Mol. Evol., 19, 28–35.Google Scholar
  68. Moon, E., Kao, T.-H. and Wu, R. (1985) The cytochrome oxidase subunit II gene has no intron and generates two mRNA transcripts with different 5’-termini. Nuc. Acids Res., 13, 3195–212.Google Scholar
  69. Morgens, P. H., Grabau, E. A. and Gesteland, R. F. (1984) A novel soybean mitochondrial transcript resulting from a DNA rearrangement involving the 5S rRNA gene. Nuc. Acids Res., 12, 5665–84.Google Scholar
  70. Muller, J. (1981) Fossil pollen records of extant angiosperms. Bot. Rev., 47, 1–141.Google Scholar
  71. Neale, D. B., Wheeler, N. C. and Allard, R. W. (1986) Paternal inheritance of chloroplast DNA in Douglas-fir. Can. J. For. Res., 16, 1152–4.Google Scholar
  72. Nei, M. (1983) Genetic polymorphism and the role of mutation in evolution. in Evolution of Genes and Proteins (eds M. Nei and R. K. Koehn ), Sinauer Associates, Sunderland, MA, pp. 165–90.Google Scholar
  73. Nei, M. and Li, W.-H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 76, 5269–73.Google Scholar
  74. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S.-I., Inokuchi, H. and Ozeki, H. (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 322, 572–4.Google Scholar
  75. Palmer, J. D. (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. in Molecular Evolutionary Genetics (ed. R. J. Maclntyre ), Plenum Press, New York, pp. 131–240.Google Scholar
  76. Palmer, J. D. (1985b) Comparative organization of chloroplast genomes. Ann. Rev. Genet., 19, 325–54.Google Scholar
  77. Palmer, J. D. (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am. Nat. 130, (supplement) S6–829.Google Scholar
  78. Palmer, J. D. and Herbon, L. A. (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr. Genet., 11, 565–70.Google Scholar
  79. Palmer, J. D., Jorgensen, R. A. and Thompson, W. F. (1985) Chloroplast DNA variation and evolution in Pisum: Patterns of change and phylogenetic analysis. Genetics, 109, 195–213.Google Scholar
  80. Palmer, J. D., Osorio, B., Aldrich, J. and Thompson, W. F. (1987) Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr. Genet., 11, 275–86.Google Scholar
  81. Palmer, J. D., Singh, G. P., Pillay, D. T. N. (1983) Structure and sequence evolution of three legume chloroplast DNAs. Molec. Gen. Genet., 190, 13–19.Google Scholar
  82. Palmer, J. D. and Zamir, D. (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycoperiscon. Proc. Natl. Acad. Sci. USA, 79, 5006–10.Google Scholar
  83. Poulsen, C. R. (1982) Comments on the structure and function of the large subunit of the enzyme ribulose bisphosphate carboxylase-oxygenase. Carlsberg Res. Comm., 46, 259–73.Google Scholar
  84. Quigley, F. and Weil, J. H. (1985) Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes. Curr. Genet., 9, 495–503.Google Scholar
  85. Ritland, K. and Clegg, M. T. (1987) Evolutionary analyses of plant DNA sequences. Am. Nat., 130, (supplement): S74 - S100.Google Scholar
  86. Rodermel, S. R. and Bogorad, L. (1987) Molecular evolution and nucleotide sequences of the maize plastid genes for the a subunit of CF1 (atpA) and the proteolipid subunit of CF0 (atpH). Genetics, 116, 127–39.Google Scholar
  87. Schardl, C. L., Lonsdale, D. M., Pring, D. R. and Rose, K. R. (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature, 310, 292–6.Google Scholar
  88. Schwarz, Z. and Kossel, H. (1980) The primary structure of 16S rDNA from Zea mays chloroplast is homologous to E. coli 16S rRNA. Nature, 283, 739–42.Google Scholar
  89. Scowcroft, W. R. (1979) Nucleotide polymorphism in chloroplast DNA of Nicotiana debneyi. Theor. Appl. Genet., 55, 133–7.Google Scholar
  90. Sederoff, R. R. (1984) Structural variation in mitochondrial DNA. Adv. Genet., 22, 1–108.Google Scholar
  91. Sederoff, R. R. (1987) Molecular mechanisms of mitochondrial-genome evolution in higher plants. Am. Nat., 130, (supplement): S30 - S45.Google Scholar
  92. Sederoff, R. R. and Levings, C. S. III (1985) Supernumerary DNAs in plant mitochondria. in Genetic Flux in Plants (eds B. Hohn and E. S. Dennis ), Springer-Verlag, New York, pp. 92–109.Google Scholar
  93. Sederoff, R. R., Levings, C. S. III, Timothy, D. H. and Hu, W. W. L. (1981) Evolution of DNA sequence organization in mitochondrial genomes of Zea. Proc. Natl. Acad. Sci. USA, 10, 5953–7.Google Scholar
  94. Sederoff, R. R., Ronald, P., Bedinger, P., Rivin, C., Walbot, V., Bland, M. and Levings, C. S. III (1986) Maize mitochondrial plasmid S-1 sequences share homology with chloroplast gene psbA. Genetics, 113, 469–82.Google Scholar
  95. Selander, R. K. (1976) Genetic variation in natural populations. in Molecular Evolution (ed. F. Ayala) Sinauer Assoc., Sunderland, MA, pp. 21–45.Google Scholar
  96. Shinozaki, K., Deno, H., Kato, A. and Sugiura, M. (1983) Overlap and cotranscrip-tion of the genes for the beta and epsilon subunits of tobacco chloroplast ATPase. Gene, 24, 147–55.Google Scholar
  97. Shinozaki, K., Deno, H., Wakasugi, T. and Sugiura, M. (1986) Tobacco chloroplast gene coding for subunit I of proton-translocating ATPase: comparison with the wheat subunit I and E. coli subunit b. Curr. Genet., 10, 421–3.Google Scholar
  98. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and Sugiura, M. (1986) The complete nucleotide sequence of tobacco chloroplast genorne: its gene organization and expression. EMBO Journal, 5, 2043–50.Google Scholar
  99. Shinozaki, K. and Sugiura, M. (1982) The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase. Gene, 20, 91–102.Google Scholar
  100. Sorenson, J. C. (1984) The structure and expression of nuclear genes in higher plants. Adv. Genet., 22, 109–44.Google Scholar
  101. Spencer, D. F., Schnare, M. N. and Gray, M. W. (1984) Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria and Escherichia coli. Proc. Natl. Acad. Sci. USA, 81, 493–7.Google Scholar
  102. Stern, D. B. and Lonsdale, D. M. (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature, 299, 698–702.Google Scholar
  103. Stern, D. B. and Newton, K. J. (1985) Mitochondrial gene expression in Cucurbitaceae: conserved and variable features. Curr. Genet., 9, 395–405.Google Scholar
  104. Stern, D. B. and Palmer, J. D. (1984) Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc. Natl. Acad. Sci. USA, 81, 1946–50.Google Scholar
  105. Stern, D. B. and Palmer, J. D. (1986) Tripartite mitochondrial genomes of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nuc. Acids Res., 14, 5651–66.Google Scholar
  106. Stern, D. B., Bang, A. G. and Thompson, W. F. (1986) The watermelon mitochondrial URF-1 gene: evidence for a complex structure. Curr. Genet., 10, 857–69.Google Scholar
  107. Sugita, M. and Sugiura, M. (1983) A putative gene of tobacco chloroplast coding for ribosomal protein similar to E. coli ribosomal protein S19. Nuc. Acids Res., 11, 1911–18.Google Scholar
  108. Sytsma, K. J. and Schaal, B. A. (1985) Phylogenetics of the Lisianthius skinneri (Gentianaceae) species complex in Panama utilizing DNA restriction fragment analysis. Evolution, 39, 594–608.Google Scholar
  109. Sytsma, K. J. and Gottlieb, L. D. (1986) Chloroplast DNA evolution and phylogenetic relationships in Clarkia sect. Peripetasma (Onagraceae). Evolution, 40, 124–861.Google Scholar
  110. Takahata, N. and Palumbi, S. R. (1985) Extranuclear differentiation and gene flow in the finite island model. Genetics, 109, 441–57.Google Scholar
  111. Takaiwa, F. and Sugiura, M. (1982) The complete nucleotide sequence of a 23S rRNA gene from tobacco chloroplasts. Eur. J. Biochem., 124, 13–19.Google Scholar
  112. Terachi, T., Ogihara, Y. and Tsunewaki, K. (1984) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. III. Chloroplast genomes of the M and modified M genome-carrying species. Genetics, 108, 681–95.Google Scholar
  113. Timmis, J. N. and Scott, N. S. (1985) Movement of genetic information between the chloroplast and nucleus. in Genetic Flux in Plants (eds B. Hohn and E. S. Dennis ), Springer-Verlag, New York, pp. 61–78.Google Scholar
  114. Timothy, D. H., Levings, C. W. III, Pring, D. R., Conde, M. F. and Kermicle, J. L. (1979) Organelle DNA variation and systematic relationships in the genus Zea:Teosinte. Proc. Natl. Acad. Sci. USA, 76, 4220–4.Google Scholar
  115. Tohdoh, N. and Sugiura, M. (1982) The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroplasts. Gene, 17, 213–18.Google Scholar
  116. Vedel, F., Chétrit, P., Mathieu, C., Pelletier, G. and Primard, C. (1986) Several different mitochondrial DNA regions are involved in intergenomic recombination in Brassica napus cybrid plants. Curr. Genet., 11, 17–24.Google Scholar
  117. Volkert, F. C. and Broach, J. R. (1986) Site-specific recombination promotes plasmid amplification in yeast. Cell, 46, 541–50.Google Scholar
  118. Wagner, D. B., Furnier, G. R., Saghai-Maroof, M. A., Williams, S. M., Dancik, B. P., Allard, R. W. (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad. Sci. USA, 84, 2097–100.Google Scholar
  119. Ward, B. L., Anderson, R. S. and Bendich, A. J. (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell, 25, 793–803.Google Scholar
  120. Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., HelmBychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D. and Stoneking, M. (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linnean Soc., 26, 375–400.Google Scholar
  121. Wolfe, K. H., Li, W.-H. and Sharp, P. M. (1988) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  122. Zinn, A. R. and Butow, R. A. (1985) Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Cell, 40, 887–95.Google Scholar
  123. Zurawski, G., Bohnert, H. J., Whitfield, P. R. and Bottomley, W. (1982) Nucleotide sequence of the gene for the Mr 32 000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38 950. Proc. Natl. Acad. Sci. USA, 79, 7699–703.Google Scholar
  124. Zurawski, G., Bottomley, W., Whitfeld, P. R. (1982) Structures of the genes for the ß and e subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc. Natl. Acad. Sci. USA, 79, 6260–4.Google Scholar
  125. Zurawski, G., Bottomley, W. and Whitfeld, P. R. (1984) Junctions of the large single copy region and the inverted repeats in Spinacia oleracea and Nicotiana debneyi chloroplast DNA: sequence of the genes for tRNAH15 and the ribosomal proteins S19 and L2. Nuc. Acids Res., 12, 6547–8.Google Scholar
  126. Zurawski, G. and Clegg, M. T. (1984) The barley chloroplast DNA atpBE, trnM2, and trnVl loci. Nuc. Acids Res., 12, 2549–59.Google Scholar
  127. Zurawski, G., Perrot, B., Bottomley, W. and Whitfeld, P. R. (1981) The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nuc. Acids Res., 9d, 3251–70.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • C. William BirkyJr.

There are no affiliations available

Personalised recommendations