Skip to main content

Physiological models of grass growth

  • Chapter
The Grass Crop

Part of the book series: The Grass Crop ((WOCS))

Abstract

A mathematical model can be thought of as a concise mechanism for providing a numerical description of a process or an object. In agriculture, models are usually concerned with processes, which may be associated with problems as different as economic issues and the biochemistry of nitrate reduction. In this chapter we shall be concerned with modelling the growth of the grass crop using physiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acock, B., Thornley, J. H. M. and Warren-Wilson, J. (1971) in Potential Crop Production (eds P. F. Wareing and J. P. Cooper), Heinemann, London, pp. 43–75.

    Google Scholar 

  • Barnes, A. and Hole, C. C. (1978) A theoretical basis of growth and maintenance respiration. Ann. Bot., 42, 1217–21.

    Google Scholar 

  • Bean, E. W. (1964) The influence of light intensity on the growth of an S37 cocksfoot sward. Ann. Bot., 28, 427–43.

    Google Scholar 

  • Blackman, F. F. (1905) Optima and limiting factors. Ann. Bot., (old series) 19, 281–95.

    Google Scholar 

  • Blackman, G. E. (1956) Influence of light and temperature on leaf growth, in The Growth of Leaves (ed. F. L. Milthorpe), Proc. 3rd Easter School Agric. Soc., Univ. Nottingham, 151–67.

    Google Scholar 

  • Brouwer, R. (1963) Some aspects of the equilibrium between overground and underground plant parts. Jaarb. Inst. Biol. Scheik. Onder, 2, Landbewass., 31–9.

    Google Scholar 

  • Brouwer, R. (1966) Root growth of cereals and grasses, in The Growth of Cereals and Grasses (eds F. L. Milthorpe and J. P. Iving), Proc. 12rd Easter School Agric. Soc., Univ. Nottingham, pp. 153–66.

    Google Scholar 

  • Charles-Edwards, D. A. (1981) The Mathematics of Photosynthesis and Production, Academic Press, London.

    Google Scholar 

  • Clement, C. R., Hopper, M. J., Jones, L. H. P. and Leafe, E. L. (1978) The uptake of nitrate by Lolium perenne from flowing nutrient solution. II. Effect of light, defoliation and relationship to CO2 flux. J. Exp. Bot., 29, 1173–83.

    Article  Google Scholar 

  • Davidson, J. L. and Milthorpe, E. L. (1966) Leaf growth in Dactylis glomerata following defoliation. Ann. Bot., 30, 73–184.

    Google Scholar 

  • Davies, A. (1965) Carbohydrate levels and regrowth in a perennial ryegrass. J. Agric. Sci., Camb., 65, 213–21.

    Article  Google Scholar 

  • Davies, A. (1971) Changes in growth rate and morphology of perennial ryegrass swards at high and low nitrogen levels. J. Agric. Sci., Camb., 77, 123–34.

    Article  Google Scholar 

  • Eagles, C. F. (1973) Effect of light intensity on the growth of natural populations of Dactylis glomerata L. Ann. Bot., 37, 253–62.

    Google Scholar 

  • Goudriaan, J. and Waggoner, P. E. (1972) Simulating both aerial microclimate and soil temperature from observation above the foliar canopy. Neth. J. Agric. Sci., 20, 104–24.

    Google Scholar 

  • Johnson, I. R. and Parsons, A. J. (1985) A theoretical analysis of grass growth under grazing. J. Theor. Biol., 112, 345–67.

    Article  Google Scholar 

  • Johnson, I. R. and Thornley, J. H. M. (1983) Vegetative crop growth model incorporating leaf area expansion and senescence, and applied to grass. Plant, Cell, Envir., 6, 721–9.

    Google Scholar 

  • Johnson, I. R. and Thornley, J. H. M. (1984) A model of instantaneous and daily canopy photosynthesis. J. Theor. Biol., 107, 531–45.

    Article  Google Scholar 

  • Johnson, I. R., Amiziane, T. E. and Thornley, J. H. M. (1983) A model of grass growth. Ann. Bot., 51, pp. 599–609.

    Google Scholar 

  • Klepper, L., Flesher, D. and Hageman, R. H. (1971) Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Pl. Physiol., 48, 580–90.

    Article  Google Scholar 

  • Lainson, R. A. and Thornley, J. H. M. (1982) A model for leaf expansion in cucumber. Ann. Bot., 50, 407–25.

    Google Scholar 

  • Lambert, J. R. and Penning de Vries, F. W. T. (1971) Dynamics of water in the soil-plant-atmosphere system: a model named Troika. Rep. no. 3, Dept. Theor. Prod. Ecol., Univ. Wageningen.

    Google Scholar 

  • Leafe, E. L., Jones, M. B. and Stiles, W. (1978) The physiological effects of water stress on perennial ryegrass in the field. Proc. 13th Int. Grassland Congr., Leipzig, 1977, Section 1–2, pp. 165–84.

    Google Scholar 

  • Marshall, B. and Biscoe, P. V. (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. I. Exp. Bot., 31, 41–8.

    Article  Google Scholar 

  • McCree, K. J. (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions, in Prediction and Measurement of Photosynthetic Productivity (ed. I. Setlik), Pudoc, Wageningen, pp. 221–9.

    Google Scholar 

  • McMurtrie, R. (1981) Suppression and dominance of trees with overlapping crowns. Theor. Biol., 89, 151–174.

    Article  Google Scholar 

  • Monsi, M. and Saeki, T. (1953) Ãœber den Lichtfaktor in den Pflanzengesell schaften und seine Bedentung für die Stoffproduktion. lap. J. Bot., 14, 22–52.

    Google Scholar 

  • Monteith, J. L. (1965) Light distribution and photosynthesis in field crops. Ann. Bot., 29, 17–27.

    Google Scholar 

  • Monteith, J. L. (1981a) Does light limit crop production? in Physiological Processes Limiting Plant Productivity (ed. C. B. Johnson), Butterworths, London, pp. 23–38.

    Google Scholar 

  • Monteith, J. L. (1981b) Climatic variation and the growth of crops. Q. J. R. Met. Soc., 107, 749–74.

    Article  Google Scholar 

  • Peacock, J. M. (1975a) Temperature and leaf growth in Loliumperenne. I. The thermal microclimate: its measurement and relation to crop growth. J. Appl. Ecol., 12, 99–114.

    Article  Google Scholar 

  • Peacock, J. M. (1975b) Temperature and leaf growth in Lolium perenne. II. The site of temperature perception. J. Appl. Ecol., 12, 115–23.

    Article  Google Scholar 

  • Penning de Vries, F. W. T. (1972) Respiration and Growth, in Crop Processes in Controlled Environments (eds A. R. Rees, K. E. Cockshull, D. W. Hand and R. G. Hurd), Academic Press, London, pp. 327–46.

    Google Scholar 

  • Rabinowitch, E. I. (1951) Photosynthesis and Related Processes, Vol. 2, Part 1. Interscience, New York.

    Google Scholar 

  • Robson, M. J. (1972) The effect of temperature on the growth of S170 tall fescue (Festuca arundinacea). 1. Constant temperature. J. Appl. Ecol., 9, 643–53.

    Article  Google Scholar 

  • Robson, M. J. and Deacon, M. J. (1978) Nitrogen deficiency in small closed communities of S24 ryegrass. II. Changes in the weight and chemical composition of single leaves during their growth and death. Ann. Bot., 42, 1199–213.

    Google Scholar 

  • Robson, M. J. and Jewiss, O. R. (1968) A comparison of British and North African varieties of tall fescue (Festuca arundinacea). I. Leaf growth during winter and the effects on it of temperature and daylength. J. Appl. Ecol., 4, 475–84.

    Google Scholar 

  • Robson, M. J. and Parsons, A. J. (1978) Nitrogen deficiency in small closed communities of S24 ryegrass. I. Photosynthesis, respiration, dry matter production and partition. Ann. Bot., 42, 1185–97.

    Google Scholar 

  • Ryle, G. J. A. and Powell, C. E. (1976) Effect of rate of photosynthesis on the pattern of assimilate distribution in the graminaceous plant. J. Exp. Bot., 27, 189–99.

    Article  Google Scholar 

  • Ryle G. J. A., Cobby, J. M. and Powell, C. E. (1976) Synthetic and maintenance respiratory losses of 14CO2 in uniculm barley and maize. Ann. Bot., 40, 571–86.

    Google Scholar 

  • Saeki, T. (1963) Light relations in plant communities, in Environmental Control of Plant Growth (ed. L. T. Evans), Academic Press, New York, pp. 79–94.

    Google Scholar 

  • Sheehy, J. E. and Cook, D. (1977) Irradiance distribution and CO2 flux in forage grass canopies. Ann. Bot., 41, 1017–29.

    Google Scholar 

  • Sheehy, J. E. and Peacock, J. M. (1975) Canopy photosynthesis and crop growth rate of eight temperate forage grasses. J. Exp. Bot., 26, 679–91.

    Article  Google Scholar 

  • Sheehy, J. E., Cobby, J. M., and Ryle, G. J. A. (1979) The growth of perennial ryegrass: a model. Ann. Bot., 43, 335–54.

    Google Scholar 

  • Sheehy, J. E., Cobby, J. M. and Ryle, G. J. A. (1980) The use of a model to investigate the influence of some environmental factors on the growth of perennial ryegrass. Ann. Bot., 46, 343–65.

    Google Scholar 

  • Sofield, I. (1980) A computer simulation model of the soil-plant-and-nitrogen relationships in a cut grass sward. Ph.D. Thesis, Reading University.

    Google Scholar 

  • Thornley, J. H. M. (1970) Respiration, growth and maintenance in plants. Nature, 227, 304–5.

    Article  Google Scholar 

  • Thornley, J. H. M. (1972a) A model to describe the partitioning of photosynthate during vegetative plant growth. Ann. Bot., 36, 419–30.

    Google Scholar 

  • Thornley, J. H. M. (1972b) A balanced quantitative model for root: shoot ratios in vegetative plants. Ann. Bot., 36, 431–41.

    Google Scholar 

  • Thornley, J. H. M. (1976) Mathematical Models in Plant Physiology, Academic Press, London.

    Google Scholar 

  • Thornley, J. H. M. (1977a) Growth maintenance and respiration: a reinterpretation. Ann. Bot., 41, 1191–203.

    Google Scholar 

  • Thornley, J. H. M. (1977b) Root: shoot interactions, in Integration of Activity in the Higher Plant (ed. P. H. Jennings), Symp. Soc. Exp. Biol., 31, 367–89.

    Google Scholar 

  • Thornley, J. H. M. (1982) Interpretation of respiration coefficients. Ann. Bot., 49, 257–9.

    Google Scholar 

  • Wareing, P. F. (1977) Growth substances and integration in the whole plant, in Integration of Activity in the Higher Plant (ed. P. H. Jennings), Symp. Soc. Exp. Biol., 31, 337–65.

    Google Scholar 

  • White, H. L. (1937) The interaction of factors in the growth of Lemna XII. The interaction of nitrogen and light intensity in relation to root length. Ann. Bot., 1, 649–54.

    Google Scholar 

  • Zur, B. and Jones, J. W. (1981) A model for the water relations, photosynthesis, and expansive growth of crops. Wat. Resour. Res., 17, (2), 311–20.

    Article  Google Scholar 

Download references

Authors

Editor information

Michael B. Jones Alec Lazenby

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Chapman and Hall Ltd

About this chapter

Cite this chapter

Sheeby, J.E., Johnson, I.R. (1988). Physiological models of grass growth. In: Jones, M.B., Lazenby, A. (eds) The Grass Crop. The Grass Crop. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1187-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1187-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7029-4

  • Online ISBN: 978-94-009-1187-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics