Gravitational Radiation from Rotating Stellar Core Collapse

  • L. S. Finn
Part of the NATO ASI Series book series (ASIC, volume 253)

Abstract

The gravitational collapse of a rotating stellar core has long been considered a promising burst source of gravitational radiation. In order to determine accurately the gravitational waveform from the collapse and the efficiency of the collapse in converting binding energy into gravitational radiation, it is necessary that a simulation accurately model certain features of the collapse. One purpose of this paper is to examine the scenario for supernova core collapse, and from it determine what must be simulated to achieve accuracy in the waveform and efficiency.

In addition to the hydrodynamic aspects of the collapse, a robust means of extracting the gravitational waveform from the simulation must be provided. In a Newtonian calculation, the standard quadrupole equation is the usual means. A second purpose of this paper is to point out some difficulties in the application of the quadrupole law to finite-difference calculations of gravitational waveforms, and to suggest new, more robust (but mathematically equivalent) means of extracting the gravitational waveforms from Newtonian finite-difference calculations.

Keywords

White Dwarf Gravitational Collapse Gravitational Radiation Multipole Moment Artificial Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkat, Z., Reiss, Y., Rakavy, G. 1974.Astrophys. J. (Letters),193, L21.CrossRefGoogle Scholar
  2. Baron, E., Cooperstein, J., & Kahana, S. 1985.Phys. Rev. Lett.,55, 1.CrossRefGoogle Scholar
  3. Bethe, H. A. 1986. “Supernova Theory” in Highlights of Modern Astrophysics, Shapiro, S. L. k Teukolsky, S. A. editors, Wiley k Sons, New York, pg. 45.Google Scholar
  4. Bethe, H.A., Brown, G.E., Applegate, J., & Lattimer, J.M. 1979.Nucl. Phys.,A324, 487.Google Scholar
  5. Bethe, H. A. k Wilson, J.R. 1985.Astrophys.J.,295, 14–23.CrossRefGoogle Scholar
  6. Burrows, A. k Lattimer, J.M. 1985.Astrophys. J. (Letters),299, L19–L22.CrossRefGoogle Scholar
  7. Chevalier, R. A. 1975. Astrophys. J.,208, 826–828.CrossRefGoogle Scholar
  8. Damour, T. 1987. “An Introduction to the Theory of Gravitational Radiation” inGravitation in Astrophysics, Carter, B. k Hartle, J.B. editors, Plenum Press, New YorkGoogle Scholar
  9. Evans, C.R. 1984. “A Method for Numerical Relativity: Simulation of Axisymmetric Gravitational Collapse and Gravitational Radiation” University of Texas ( Austin) Thesis, University Microfilms.Google Scholar
  10. Evans, C.R. 1986. “An Approach for Calculating Axisymmetric Gravitational Collapse” inDynamical Spacetimes and Numerical Relativity, Centrella, J. M. editor, Cambridge University Press, Cambridge, pg. 3.Google Scholar
  11. Evans, C.R. 1987. “Gravitational Radiation from Collisions of Compact Stars” to appear inProceedings of the Thirteenth Texas Symposium on Relativistic Astrophysics. Google Scholar
  12. Evans, C.R., Smarr, L.L., & Wilson, J.R. 1986. “Numerical Relativistic Gravitational Collapse with Spatial Time Slices” inAstrophysical Radiation Hydrodynamics, Winkler, K-H. k Norman, M.L. editors, Reidel, Dordrecht (Holland), pg. 491.Google Scholar
  13. Evans, C.R. k Finn, L.S. 1987.In preparation.Google Scholar
  14. Filippenko, A. V. k Sargent, W. L. W. 1985.Nature,316, 407–412.CrossRefGoogle Scholar
  15. Gilden, D.L. k Shapiro, S.L. 1984.Astrophys. J.,287, 728.CrossRefGoogle Scholar
  16. Goldreich, P. & Weber, S. V. 1980.Astrophys. J.,238, 991–7.CrossRefGoogle Scholar
  17. Iben, I. Jr. & Renzini, A. 1983. Ann.Rev. Astr. Astrophys.,21, 271.CrossRefGoogle Scholar
  18. Landau, L.D. k Lifshitz, E.M. 1975.Classical Theory of Fields, Fourth Revised English Edition Pergammon Press, Oxford.Google Scholar
  19. Mazurek, T. J., Lattimer, J.M., & Brown, G.E. 1979.Astrophys. J.,229, 713.CrossRefGoogle Scholar
  20. Michel, F. C. 1987.California Institute of Technology preprint. Google Scholar
  21. Misner, C.W., Thorne, K.S., & Wheeler, J. A. 1973. Gravitation, W.H. Freeman and Company, San Francisco.Google Scholar
  22. Müller, E. 1982. Astr. Astrophys.,114, 53–59.Google Scholar
  23. von Neumann, J. & Richtmyer, R.D. 1950.J. Appl Physics,21, 232.MATHCrossRefGoogle Scholar
  24. Norman, M. L. & Winkler, K. A. 1986. “2-D Eulerian Hydrodynamics with Fluid Interfaces, Self-Gravity and Rotation” inAstrophysical Radiation Hy-drodynamics, Winkler, K.A. k Norman, M.L. editors, Reidel, Dordrecht (Holland).Google Scholar
  25. Piran, T. & Stark, R. F. 1986. “Numerical Relativity, Rotating Gravitational Collapse and Gravitational Radiation” inDynamical Spacetimes and Numerical Relativity, Centrella, J. M. editor, Cambridge University Press, Cambridge, pg. 40.Google Scholar
  26. Shapiro, S.L. 1977.Astrophys. J.,214, 566–575.CrossRefGoogle Scholar
  27. Saenz, R. A. & Shapiro, S.L. 1978.Astrophys. J.,229, 286–303.CrossRefGoogle Scholar
  28. Saenz, R. A. & Shapiro, S.L. 1979.Astrophys. J.,229, 1107–1125.CrossRefGoogle Scholar
  29. Saenz, R. A. & Shapiro, S.L. 1981.Astrophys. J.,244, 1033–1038.CrossRefGoogle Scholar
  30. Shapiro, S. L. & Teukolsky, S. A. 1983.black Holes, White Dwarfs, and Neutron Stars, John Wiley k Sons, New York.CrossRefGoogle Scholar
  31. Stark, R.F. & Piran, T. 1985.Phys. Rev. Lett.,55, 891.CrossRefGoogle Scholar
  32. Stark, R. F. & Piran, T. 1986. “A Numerical Computation of the Gravitational Radiation From Rotating Gravitational Collapse” inProceedings of the Fourth Marcel Grossman Meeting on General Relativity, Ruffini, R. editor, Elseveir Science Publishers.Google Scholar
  33. Tammann, G.A. 1982. “Supernova Statistics and Related Problems” inSuper- novae: A Survey of Current Research, Rees, M.J. k Stoneham, R.J. editors, Reidel, Dordrecht (Holland), pg. 371.Google Scholar
  34. Thorne, K.S. 1980. Rev.Mod. Phys.,52, 299.MathSciNetCrossRefGoogle Scholar
  35. Thuan, T.X. k Ostriker, J.P. 1974.Astrophys. J. (Letters),204, LI.Google Scholar
  36. Turner, M. S. & Wagoner, R. V. 1979. “Gravitational Radiation from Slowly-Rotating ‘Supernovae’: Preliminary Results” inSources of Gravitational Radiation, Smarr, L.L. editor, Cambridge University Press, Cambridge.Google Scholar
  37. Wilson, J.R. 1979. “A Numerical Method for Astrophysics” inSources of Gravitational Radiation, Smarr, L.L. editor, Cambridge University Press, Cambridge.Google Scholar
  38. Woosley, S.E. k Weaver, T.A. 1985. InNucleosynthesis and Its Implications On Nuclear and Particle Physics, Proc. Moriand Astrophys. Conf. 5th, Audouze, J. k van Thuan, T., Reidel, Dordrecht (Holland).Google Scholar
  39. Woosley, S.E. k Weaver, T.A. 1986.Ann. Rev. Astr. Astrophys.,24, 205–33.CrossRefGoogle Scholar
  40. Zel’dovich, Ya. B. k Novikov, I. D. 1971.Relativistic Astrophysics, Volume 1,University of Chicago Press, Chicago.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • L. S. Finn
    • 1
  1. 1.Theoretical AstrophysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations