The Concept of Probability pp 315-334 | Cite as
Relativity and Probability, Classical and Quantal
Conference paper
Abstract
A ’manifestly relativistic’ presentation of Laplace’s algebra of conditional probabilities is proposed, and its ’correspondence’ with Dirac’s algebra of quantal transition amplitudes is displayed. The algebraic reversibility of these is classically tantamount to time reversal, or ’T-in variance’, and quan tally to ’CPT-in variance’. This is closely related to the de jure reversibility of the ⇄ negentropy information transition, although de facto the upper arrow prevails aver the lower one (Second Law).
Keywords
Conditional Probability Physical Review Jordan Algebra Feynman Graph Shaped Diagram
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Bibliography
- Aharonov, Y. and Albert, D.Z. 1980, ’States and Observables in Relativistic Quantum Mechanics’. Physical Review 21: 3316-3324.ADSMathSciNetGoogle Scholar
- Aharonov, Y. and Albert, D.Z. (1981), ’Can we make sense out of the Measurement Process in Relativistic Quantum Mechanics’. Physical Review 24: 359- 370.ADSGoogle Scholar
- Bergson, H. (1907), L’Evolution crlatrice. Alcan, Paris.Google Scholar
- Boltsmann, L. (1964), Lectures on Gas TheoryGoogle Scholar
- Born, M. (1926), ’Quantenmechanik des Stossvorgange Zeitschrift für Physik 38: 858-888CrossRefGoogle Scholar
- Costa de Beauregard, O.: (1953) ’Une Riponse 1’Argument Dirigt par Einstein, Podolsky et Rosen Contre 1’interpret at ion bohrienne des Phénoménes Quantiques’ C. R. Academies des sciences 236: 1632-1634.MATHMathSciNetGoogle Scholar
- Costa de Beauregard, O.: (1977), ’Time Symmetry and the Einstein-Podolsky-Rosen Paradox’. II Nuovo Cim. 42B: 41-64.CrossRefADSGoogle Scholar
- Costa de Beauregard, O.: (1979), ’Time Symmetry and the Einstein-Podolsky-Rosen Paradox, II’. II Nuovo Cimento 51B, 267-279.Google Scholar
- CosCosta de Beauregard, O.: (1981), ’Is the Deterministically Evolving State Vector an Unnecessary Concept?, Lettere al Nuovo Cimento 31: 43-44.CrossRefGoogle Scholar
- Costa de Beauregard, O.: (1982), ’Is the Deterministically Evolving State Vector a Misleading Concept’. Lettere al Nuovo Cimento 36: 39-40.CrossRefGoogle Scholar
- Costa de Beauregard, O.: (1983), ’LorentE and CPT Invariances and the Einstein-Podolsky-Rosen Correlations’. Physical Review Letters 50: 867-869.CrossRefADSGoogle Scholar
- Costa de Beauregard, O.: (1985) ’On Some Frequent but Controversial Statements concerning the Einstein-Podolsky-Rosen Correlations’. Foundations of Physics 15: 871-887.CrossRefADSGoogle Scholar
- Costa de Beauregard, O.: (1986), ’Causality as Identified with Conditional Probability and the Quant al Nonseparability’. Annals of the New York Acad, of Sciences 480: 317-325.CrossRefGoogle Scholar
- Costa de Beauregard, O.: (1987a), ’On the Zigzagging Causality EPR Model: Answer to Vigier and Coworkers and to Sutherland’. Foundations of Physics 17: 775-785.CrossRefADSMathSciNetGoogle Scholar
- Costa de Beauregard, O.: (1987b), Time, The Physical Magnitude. Reidel: Dordrecht.CrossRefGoogle Scholar
- Cramer, J.G. (1980), ’Generalised Absorber Theory and the Einstein-Podolsky- Rosen Paradox’. Physical Review 22: 362-376.ADSMathSciNetGoogle Scholar
- Cramer, J.G. (1986), ’The Transactional Interpretation of Quantum Mechanics’. Reviews of Modern Physics 58: 847-887.CrossRefADSMathSciNetGoogle Scholar
- Davidon, W.C. (1976), ’Quantum Physics of Single Systems’. II Nuovo Cimento 36: 34-40.CrossRefADSGoogle Scholar
- Dirac, P.A.M. (1930), The Principles of Quantum Mechanics. Clarendon Press: OxfordMATHGoogle Scholar
- Eccles, J. ’Do Mental Events Cause Neural Events Analogously to the Probability Fields of Quantum Mechanics?’. Procedings of the Royal Society 22: 411-428.Google Scholar
- Einstein, A (1949), ’Reply to Criticisms’. In Albert Einstein Philosopher Scientist, edited by Shilpp P.A.. Illinois: The Library of Living Philosophers: pp. 665-688.Google Scholar
- Einstein, A., Podolsky B. and Rosen, N. (1935), ’Can Quantum Mechanical Description of Physical Reality be Considered Complete’. Physical Review 48: 777-780.CrossRefADSGoogle Scholar
- Feynman, R.P. (1949a), ’The Theory of Positron’. Physical Review 76: 749-759.CrossRefMATHADSMathSciNetGoogle Scholar
- Feynman, R.P. (1949b), ’Space-time Approach to quantum Electrodynamics’. Physical Review 76: 769-789.CrossRefMATHADSMathSciNetGoogle Scholar
- Pock, V. (1948), ’On the Interpretation of the Wave Function Directed Towards the Past’. Doklady Acad. Nauk SSSR 60: 1157-1159.Google Scholar
- Jahn, R., and Dunne, B.J. (1987), Margins of Reality.Google Scholar
- Jaynes, E.T. (1983), Papers on Probability, Statistics and Statistical Physics, edited by Rosenkranz, R.D.. Dordrecht: Reidel.Google Scholar
- Jordan, P. (1926), ’Ueber eine Begriindung des Quantummechanik’. Zeitschrift fiir Physik 40: 809-838.CrossRefADSGoogle Scholar
- Lande, A. (1965), New Foundations of Quantum Mechanics. Cambridge: Cambridge University Press.MATHGoogle Scholar
- Laplace, P.S. (1891), ’Mlmoire sur la Probability des Causes par les Ev6nements’. In Oeuvres Completes, Paris: Gauthier Villars, vol. 8: pp. 27-65.Google Scholar
- Lewis, G.N. (1930), ’The Symmetry of Time in Physics’. Science 71: 570-577.CrossRefADSGoogle Scholar
- Libet, B. (1985), ’On Conscious Will in Voluntary Action’. Behavioral and Brain Sciences 8: 529-615.CrossRefGoogle Scholar
- Loschmidt, J. (1876), ’Ueber der Zustand des Warmgleichgewichtes eines Systems von Kdrpern mit Riicksicht auf die Schwerkraft’. Sits. Adak. Wiss. in Wien 73: 139-145.Google Scholar
- Lüders, G. (1952), ’Zur Bewegungsumkehr in Quantiesierten Feldtheorien’. Zeitschrift fiir Physik 133: 325-339.CrossRefMATHADSGoogle Scholar
- Mehlberg, H. (1961), ’Physical Laws and the Time Arrow’. In Current Issues in the Philosophy of Science, edited by Feigel, H. and Maxwell D.. New York: Holt Reinhart, pp. 105-138.Google Scholar
- Miller, W.A., and Wheeler, J.A. (1983), ’Delayed Choice Experiments and Bohr’s Elementary Phenomenon’. In Proceedings of the International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, edited by Kamefuchi S. and alii. Tokyo: Phys. Society, pp. 140-152.Google Scholar
- Nicolis, G. and Prigogine, I. (1977), Self-Organisation in Non-Equilibrium Systems. New York: Wiley.Google Scholar
- Pegg, D.T. (1980), ’Objective Reality, Causality and the Aspect Experiment’. Physics Letter 78A: 233-234.ADSGoogle Scholar
- Rayski, J. (1979), ’Controversial Problems of Measurement within Quantum Mechanics’. Found. Phys. 9: 217-236.CrossRefADSMathSciNetGoogle Scholar
- Rietdijk, C.W. (1981), ’Another Proof that the Future can Influence the Present’. Found. Phys. 11: 783-790.CrossRefADSGoogle Scholar
- Schwinger, J. (1948), ’Quantum Electrodynamics, I: a Covariant Formulation’. Physical Review 82: 914-927.CrossRefADSMathSciNetGoogle Scholar
- Stapp, H.P. (1975), ’Bell’s Theorem and World Process’. II Nuovo Cimento 29B: 270-276.ADSGoogle Scholar
- Sutherland, R.I. (1983), ’Bell’s Theorem and Backwards-in-Time Causality’. Intern. J. Theor. Phys. 22: 377-384.CrossRefGoogle Scholar
- Tomonaga, S.I. (1946), ’On a Relativistically Invariant Formulation of the Quantum Theory of Wave Field’. Prog. Theor. Phys. 1: 27-42.CrossRefMATHADSMathSciNetGoogle Scholar
- Waals, J.D. van der, ’Ueber die Erkl ärung des Naturgesetse auf Statistisch-Me- chanischer Grundlage’. Phys. Zeitschrift 12: 547-549.Google Scholar
- Watanabe, S. (1955), ’Symmetry of Physical Laws’. Reviews of Modern Physics 27: 26-39.CrossRefMATHADSMathSciNetGoogle Scholar
- Wigner, E.P. (1967), Symmetries and Reflections. Cambridge Massachussets: M.I.T. PressGoogle Scholar
Copyright information
© Kluwer Academic Publishers 1989