Advertisement

Quantum Stochastic Calculus as a Unifying Force in Physics and Probability

  • R. L. Hudson
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)

Abstract

A survey is made of the theory of quantum stochastic calculus in Fock space developed by the author and K. R. Parthasarathy, together with some of its applications. Comparison with the classical Ito stochastic calculus of Brownian motion is emphasised, as is the power of the quantum theory to unify aspects of the classical theory of stochastic processes, Boson and Fermion second quantisation and dilations of quantum dynamical semigroups.

Keywords

Brownian Motion Annihilation Operator Infinitesimal Generator Quantum Probability Stochastic Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Bratteli and D.W. Robinson Operator algebras and quantum statistical mechanics II, Springer, Berlin (1979)zbMATHGoogle Scholar
  2. [2]
    V. Gorini, A. Kossakowski and E. C. G Sudarshan, J. Math. Phys. 17, 1298 (1976)CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    A. Einstein Annalen der Physik 17, 549, (1905)CrossRefADSGoogle Scholar
  4. [4]
    R. L. Hudson, ’Quantum diffusions and cohomology of algebras’, in Proceedings of 1st World Congress of Bernoulli Society, Tashkent 1986.Google Scholar
  5. [5]
    R. L. Hudson and M. Evans, ’Multidimensional quantum diffusions’, to appear in Quantum Probability (Oberwolfach) Proceedings 1987, ed. L. Accardi, Springer LNM.Google Scholar
  6. [6]
    R. L. Hudson K.R. and Parthasarathy Commun. Math. Phys. 93, 301 (1984)CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. [7]
    R. L. Hudson and K.R. Parthasarathy Acta Applicandre Math. 2, 353 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    R. L. Hudson and K.R. Parthasarathy Commun. Math. Phys. 104, 457 (1986)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. [9]
    M. Lax Phys. Rev. 145, 111 (1965).MathSciNetGoogle Scholar
  10. [10]
    G. Lindbald Commun. Math. Phys. 48, 119 (1976)CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. [11]
    J.M. Lindsay and K.R. Parthasarathy, ’The passage from random walk to diffusion in quantum probability II’, preprint.Google Scholar
  12. [12]
    L.R. Senitzky Phys. Rev. 119, 670 (1960)CrossRefzbMATHADSMathSciNetGoogle Scholar
  13. [13]
    M. Smoluchowsky Annalen der Physik 25, 205 (1908)CrossRefADSGoogle Scholar
  14. [14]
    B. Wiener, J. Mathematics and Physics 2, 131 (1923)Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • R. L. Hudson
    • 1
  1. 1.Mathematics DepartmentUniversity of NottinghamUniversity Park, NottinghamEngland

Personalised recommendations