Advertisement

Origin of the L-Homochirality of Amino-Acids in the Proteins of Living Organisms

Part of the Topics in Molecular Organization and Engineering book series (MOOE, volume 4)

Abstract

Symmetry is equilibrium, appeasement, and, in the limit, death. By contrast, the breaking of the symmetry generates motion, animates forms, sprouts Life. Among the many examples which can be given to illustrate this law of Nature, the most typical is certainly that of natural substances. As early as the last century, the attention of chemists had been drawn to the fact that most of the substances from plants possess a rotatory power (oil of turpentine, solutions of sugar, of camphor, etc.). Around 1900, Fischer showed that the majority of the natural sugars belong to the same stereochemical series (D-series). His student, Freudenberg (1924) was one of the first to realize that the amino acids of proteins belong to L-series (Figure 1). Moreover, certain D-amino acids have subsequently been found in some organisms (bacteria, annelids, insects, octopus) as constituents of specific molecules (e.g. luciferine) but without being susceptible to incorporation in proteins [1]. More recently, at last, the discovery that, after death, amino acids of the collagen of bones progressively racemize [2, 3] has reinforced the certainty of the strong connection which exists between chiral dissymmetry and Life.

Keywords

Adsorption Energy Rotatory Power Amplification Mechanism Enantiomeric Form Natural Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Corrigan: Science 164, 142 (1969).CrossRefGoogle Scholar
  2. R. Rogers Yocum, D. J. Waxman, and J. L. Stroninger: TIBS (April 1980) 97.Google Scholar
  3. 2.
    J. L. Bada and R. Protsch:Proc. Nat. Acad. Sci. 70,1331 (1973).CrossRefGoogle Scholar
  4. 3.
    W. G. Armstrong, L. B. Halstead, F. B. Reed, and L. Wood: Phil. Trans. Royal Soc. London 301, 301 (1983).CrossRefGoogle Scholar
  5. 4.
    S. Weinberg: Phys. Rev. Lett. 19, 1264 (1967)CrossRefGoogle Scholar
  6. A. Salam: Proc. 8th Nobel Symp. —Elementary Particle Physics (ed. by N. Svartholm) Almquist and Wiksell, Stockholm, p. 367 (1968).Google Scholar
  7. 5.
    E. Fischer: Chem. Ber. 27, 3189 (1894).CrossRefGoogle Scholar
  8. 6.
    G. Wald: Ann. New York Acad. Sc. 69, 352 (1957)CrossRefGoogle Scholar
  9. E. R. Blout and M. Idelson: J. Am. Chem. Soc. 78, 3857(1956).CrossRefGoogle Scholar
  10. 7.
    C. C. Costain and G. B. M. Sutherland: J. Phys. Chem. 56, 321 (1952)CrossRefGoogle Scholar
  11. R. E. Weston: J. Am. Chem. Soc. 76, 2645 (1954).CrossRefGoogle Scholar
  12. 8.
    J. L. Bada and P. M. Helfman: World Archeology 7, 160 (1975)CrossRefGoogle Scholar
  13. R. Lafont, G. Perinet, F. Bazile, and M. Icole: Compt. Rend. Acad. Sc. Paris, Série II, 299, 447 (1984)Google Scholar
  14. A. Julg, L’anthropologie 91, 235 (1987).Google Scholar
  15. 9.
    J. L. Bada and S. E. Brown: TIBS (Sept. 1980) III.Google Scholar
  16. 10.
    L. Pasteur: in Oeuvres de Pasteur I. Dissymétrie moléculaire (ed. by Pasteur Valery-Radot) Masson, Paris, 1922.Google Scholar
  17. 11.
    L. Pasteur: Compt. Rend. Acad. Sc. Paris 78,1515(1878).Google Scholar
  18. 12.
    J. A. Le Bel: Bull. Soc. Chim. France 22, 337 (1874).Google Scholar
  19. 13.
    A. Cotton: J. Chim. Phys. 7, 81 (1909).Google Scholar
  20. 14.
    W. Kuhn and F. Braun: Naturwissenschaften 17, 227 (1929)CrossRefGoogle Scholar
  21. W. Kuhn and E. Knopf: Z. Phys. Chem. B7, 292 (1930).Google Scholar
  22. 15.
    B. Nordén: Nature 266, 567 (1977).CrossRefGoogle Scholar
  23. 16.
    P. D. Richie: Asymmetric Synthesis and Asymmetric Induction, Oxford Univ. Press, 1933.Google Scholar
  24. W. A. Bonner: in Exobiology (ed. by C. Ponnamperuma), North Holland, Amsterdam, 1972, p. 170.Google Scholar
  25. 17.
    P. Curie: J. Physique 3,409 (1894).Google Scholar
  26. 18.
    P. G. de Gennes: Compt. Rend. Acad. Sc. Paris B270, 891 (1970).Google Scholar
  27. 19.
    W. Rhodes and R. C. Dougherty: J. Am. Chem. Soc. 100, 6247 (1978)CrossRefGoogle Scholar
  28. R. C. Dougherty, J. Am. Chem. Soc. 102, 380 (1980).CrossRefGoogle Scholar
  29. 20.
    C. A. Mead and A. Moscowitz:J. Am. Chem. Soc. 102, 7301 (1980).CrossRefGoogle Scholar
  30. 21.
    A. Peres: J. Am. Chem. Soc. 102,7389 (1980).CrossRefGoogle Scholar
  31. 22.
    P. Gerike: Naturwissenschaften 62, 38 (1975)CrossRefGoogle Scholar
  32. D. Edwards, K. Cooper, and R. C. Dougherty: J. Am. Chem. Soc. 102, 381 (1980).Google Scholar
  33. 23.
    C. Honda and H. Hada: Tetrahedron Lett. 16, 177 (1976)CrossRefGoogle Scholar
  34. B. Nordén: J. Phys. Chem. 82, 744 (1978).CrossRefGoogle Scholar
  35. R. V. Jones: Proc. Roy. Soc. London A349, 423 (1976)Google Scholar
  36. P. W. Atkins: Chem. Phys. Lett. 74, 358 (1980).CrossRefGoogle Scholar
  37. 24.
    S. F. Mason:Int. Rev. Phys. Chem. 3, 217 (1983).CrossRefGoogle Scholar
  38. 25.
    E. Fischer: Chem. Ber. 27, 2985 and 3231 (1894).CrossRefGoogle Scholar
  39. 26.
    F. R. Japp:Nature 58,452 (1898).CrossRefGoogle Scholar
  40. 27.
    K. Harada: Naturwissenschaften 57,114 (1970).CrossRefGoogle Scholar
  41. 28.
    H. Kamminga: Vistas in Astronomy 26,67 (1982).CrossRefGoogle Scholar
  42. 29.
    L. Pasteur: Rev. Scientifique 7, 2 (1884).Google Scholar
  43. 30.
    G. M. Schwab and L. Rudolf: Naturwissenschaften 21, 363 (1932).CrossRefGoogle Scholar
  44. 31.
    G. M. Schwab, F. Rost, and L. Rudolf: Kolloid Z. 68, 157 (1934).CrossRefGoogle Scholar
  45. 32.
    A. P. Terentjev, Je. I. Klabunowski, and W. W. Patrikejev: Dokl. Akad. Nauk. SSSR 74, 947 (1950).Google Scholar
  46. 33.
    Je. I. Klabunowski and W. W. Patrikejev: Dokl. Acad. Nauk. SSSR 78, 415 (1951)Google Scholar
  47. G. Karogonnis and G. Goumoulos: Nature 142, 162 (1938)CrossRefGoogle Scholar
  48. G. K. Schweitzer and C. K. Talbot: J. Tenn. Acad. Sc. 25, 143 (1950).Google Scholar
  49. A. Nakahara and R. Tsuchida: J. Am. Chem. Soc. 76, 3103 (1954).CrossRefGoogle Scholar
  50. 34.
    A. Amariglio, H. Amariglio, and X. Duval:Helv. Chim. Acta 51,2110 (1968).CrossRefGoogle Scholar
  51. 35.
    D. P. Craig and D. P. Mellor: Topics Curr. Chem., Springer-Verlag, Berlin, Vol. 63, p. 1 (1976).CrossRefGoogle Scholar
  52. 36.
    W. A. Bonner, P. R. Kavasmaneck, F. S. Martin, and J. J. Flores: Science 186,143 (1974).CrossRefGoogle Scholar
  53. 37.
    A. Julg, A. Favier, and Y. Ozias: Surf. Sc. 165, L53 (1986).CrossRefGoogle Scholar
  54. 38.
    L. Vega, L. Breton, C. Girardet, and L. Galatry: J. Chem. Phys. 84, 5171 (1986).CrossRefGoogle Scholar
  55. 39.
    D. W. Gidley, A. Rich, J. Van House, and P. W. Zitzewitz: Nature 297, 639 (1982)CrossRefGoogle Scholar
  56. R. A. Hegstrom: Nature 297, 643 (1982).CrossRefGoogle Scholar
  57. 40.
    C. C. Bouchiat and M. A. Bouchiat: J. Phys. 35, 899 (1974) and 36, 493 (1975)CrossRefGoogle Scholar
  58. R. A. Hegstrom, D. W. Rein, and P. G. H. Sandards: J. Chem. Phys. 73, 2329 (1980).CrossRefGoogle Scholar
  59. 41.
    S. F. Mason and G. E. Tranter: Chem. Phys. Lett. 94, 34 (1983)CrossRefGoogle Scholar
  60. Mol. Phys. 53,1091 (1984).Google Scholar
  61. 42.
    G. E. Tranter:Mol Phys. 56, 825 (1985).CrossRefGoogle Scholar
  62. 43.
    S. F. Mason and G. E. Tranter: J. Chem. Soc., Chem. Comm., 117 (1983).Google Scholar
  63. 44.
    G. E. Tranter: J. Chem. Soc., Chem. Comm., 60 (1986).Google Scholar
  64. 45.
    F. C. Frank: Biochem. Biophys. Acta 11, 459 (1953)CrossRefGoogle Scholar
  65. B. Nordén: J. Mol Evol. 11, 313 (1978).CrossRefGoogle Scholar
  66. C. Fajszi and J. Czégé: Origins of Life 11, 143 (1981).CrossRefGoogle Scholar
  67. 46.
    D. K. Kondepudi and G. W. Nelson: Phys. Rev. Lett. 50,1023 (1983); 314, 438 (1985).CrossRefGoogle Scholar
  68. 47.
    D. K. Kondepudi and G. W. Nelson: Physica 125A, 465 (1984).Google Scholar
  69. 48.
    J. D. Bernal:The Physical Basis of Life, Routledge and Kogan Paul, London (1951).Google Scholar
  70. 49.
    A. I. Oparin:The Origin of Life on Earth, Academic Press, New York (1957).Google Scholar
  71. 50.
    M. Calvin: Chemical Evolution, Clarendon Press, Oxford (1969).Google Scholar
  72. 51.
    B. K. G. Theng: The Chemistry of Clay-Organic Reactions, Adam Hilger, London, p. 274–275 (1974).Google Scholar
  73. 52.
    A. G. Cairns-Smith: Genetic Takeover and the Mineral Origin of Life, Cambridge University Press (1982).Google Scholar
  74. 53.
    J. Labeyrie: L ’homme et le climat, Denoël, Paris (1985).Google Scholar
  75. 54.
    T. E. Pavlovskaya, A. G. Pasinskyi, and A. I. Grebenikova: Dokl Akad. Nauk SSSR 135, 743 (1960).Google Scholar
  76. 55.
    D. Yoshino, R. Hayatsu, and E. Anders:Geochim. Cosmochim. Acta 35, 927 (1971).CrossRefGoogle Scholar
  77. 56.
    J. J. Fripiat, P. Cloos, B. Calicis, and K. Makay: Proc. Int. Clay Conf Jerusalem 1, 233 (1966)Google Scholar
  78. E. T. Degens and J. Mathéja in Prebiotic and Biochemical Evolution (ed. by A. P. Kimball and J. Oró) North Holland, Amsterdam, p. 39 (1970).Google Scholar
  79. 57.
    M. Paecht-Horowitz, J. Berger, and A. Katchalsky:Nature 228,636 (1970).CrossRefGoogle Scholar
  80. 58.
    G. R. Harvey, K. Mopper, and E. T. Degens: Chem. Geol. 9,79 (1972).CrossRefGoogle Scholar
  81. 59.
    G. W. Brindley and K. Robinson: Min. Mag. 27, 242 (1946).CrossRefGoogle Scholar
  82. Crystal Structures of Clay Minerals and their X-ray Identification, ed. by G. W. Brindley and G. Brown, Mineral Soc. London (1980).Google Scholar
  83. 60.
    C. Palache, H. Berman, and C. Frondel: in Dana’s System of Mineralogy, J. Wiley, New York, 7th edn. vol. III, p. 16(1962).Google Scholar
  84. 61.
    T. A. Jackson: Chem. Geol. 7, 295 (1971).CrossRefGoogle Scholar
  85. 62.
    A. Julg: Compt. Rend. Acad. Sc. Paris II 303, 1773 (1986).Google Scholar
  86. 63.
    A. Julg and D. Létoquart: Phil Mag. 33, 721 (1976).CrossRefGoogle Scholar
  87. 64.
    A. Julg: Crystals as Giant Molecules, Lecture Notes in Chemistry, vol. 9, Springer-Verlag, Berlin (1978).Google Scholar
  88. A. Julg, A. Pellegatti, and F. Marinelli: Nouv. J. Chim. 6, 31 (1982).Google Scholar
  89. 65.
    M. Frenkel and L. Heler-Kallat: Chem. Geol. 19,161 (1977).CrossRefGoogle Scholar
  90. 66.
    G. E. Tranter: Nature 318,172(1985).CrossRefGoogle Scholar
  91. 67.
    D. Gautier: The Atmospheres of Saturn and Titan, Proc. Int. Workshop, Alpbach, Austria, ESA SP-241, p. 75 (1988).Google Scholar
  92. 68.
    J. Oró: Space Life Sciences 3, 507 (1972).CrossRefGoogle Scholar
  93. J. Oró, S. Nakaparksin, H. Lichtenstein, and E. Gil-Av: Nature 230, 107 (1971).CrossRefGoogle Scholar
  94. 69.
    L. D. Barron: Chem. Phys. Lett. 79, 392 (1981).CrossRefGoogle Scholar
  95. Molec. Phys. 43,1395 (1981).Google Scholar
  96. 70.
    H. Alfvén: Rev. Mod. Phys. 37, 652 (1965).CrossRefGoogle Scholar
  97. 71.
    H. H. Fliche, J. M. Souriau, and R. Triay: A. Astrophys. 108, 256 (1982).Google Scholar
  98. J. M. Souriau: Compt. Rend. Acad. Sc., Série générale, II, 213 (1985).Google Scholar
  99. F. X. Désert and E. Schatzman: A. Astrophys. 158,135 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers, Dordrecht, The Netherlands. 1989

Authors and Affiliations

  • A. Julg
    • 1
  1. 1.Laboratoire de Chimie ThéoriqueUniversité de ProvenceMarseilleFrance

Personalised recommendations