The virtual principles for simple beams

  • B. E. Gatewood
Part of the Mechanics of Structural Systems book series (MSSY, volume 6-7)


The beam in one plane is regarded as a simple beam. Take the particular case in Figure 2.1 with forces in the yz plane only and bending moments about the χ;-axis only. See Figure 4.1 for the notation and loading for the simple beam. From Equations (1.93) and (2.32) the stress, strain, and displacement relations for the beam in Figure 4.1 are

$$ \begin{gathered} \sigma _{yy} = Ee_{yy} = - Ez\frac{{{\rm d}^2 u_{zb} }} {{{\rm d}y^2 }} = - \frac{{M_x z}} {{I_{xx} }},\,\,\,\,u_z = u_{zb} + u_{zs} \hfill \\ \theta _x = \frac{{{\rm d}u_{zb} }} {{{\rm d}y}},\,\,\,\sigma _{yz} = Ge_{yz} = G\frac{{{\rm d}u_{zs} }} {{{\rm d}y}} = \frac{{V_z }} {{A_s }}, \hfill \\ \end{gathered} $$
$$ \begin{gathered} u_z = u_{zL} \,at\,y = L,\,\,\,\,u_z = u_{z0} \,at\,y = 0, \hfill \\ \theta _x = \theta _{xL} \,at\,y = L,\,\,\,\,\theta _x = \theta _{x0} \,at\,y = 0. \hfill \\ \end{gathered} $$


Cantilever Beam Beam Element Unit Load Virtual Displacement Moment Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.E. Gatewood and R.W. Gehring: Inelastic redundant analysis and test-data comparison for a heated ring frame, Journal of Aerospace Sciences, 29, March (1962).Google Scholar
  2. 2.
    B.E. Gatewood and R.W. Gehring: Allowable axial loads and bending moments for inelastic structures under nonuniform temperature distribution, Journal of Aerospace Sciences 29, May (1962).Google Scholar
  3. 3.
    J.S. Pruemieniecki: Theory of Matrix Structural Analyis McGraw-Hill Book Co. (1968).Google Scholar
  4. 4.
    H.C. Martin: Introduction to Matrix Structural Analysis, McGraw-Hill Book Co. (1966).Google Scholar
  5. 5.
    M.D. Vanderbilt:Matrix Structural Analysis, Quantum Publishers, New York (1974).Google Scholar
  6. 6.
    A.S. Niles and J.S. Newell: Airplane Structures, 3rd Ed., Vol. II, John Wiley and Sons (1943).Google Scholar
  7. 7.
    F. Bleich: Buckling Strength of Metal Structures, McGraw-Hill Book Co. (1952).Google Scholar
  8. 8.
    S. Timoshenko: Theory of Elastic Stability McGraw-Hill Book Co. (1936).Google Scholar

References for additional reading

  1. 9.
    D.J. Peery and J.J. Azar: Aircraft Structures, 2nd Ed., McGraw-Hill Book Co., New York (1982).Google Scholar
  2. 10.
    D.H. Allen and W.E. Haisler: Introduction to Aerospace Structural Analysis John Wiley and Sons, New York (1985).Google Scholar
  3. 11.
    J.L. Meek:Matrix Structural Analysis, McGraw-Hill Book Co., New York (1971).zbMATHGoogle Scholar
  4. 12.
    R.K. Livesley:Matrix Methods of Structural Analysis 2nd Ed., Pergamon, New York (1976).Google Scholar
  5. 13.
    J.V. Meyers:Matrix Analysis of Structures Harper and Row, New York (1985).Google Scholar
  6. 14.
    W. Weaver, Jr. and J.W. Gere: Matrix Analysis of Framed Structures, 2nd Ed., van Nostrand, New York (1980).Google Scholar
  7. 15.
    C.K. Wang and C.G. Salmon: Introductory Structural Analysis Prentice Hall, Englewood Cliffs, N.J. (1984).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • B. E. Gatewood
    • 1
  1. 1.Dept. of Aeronautical and Astronautical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations