Skip to main content

Bodies in a current-carrying fluid

  • Chapter
Electrically Induced Vortical Flows

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 9))

  • 116 Accesses

Abstract

To explain several of the effects observed in industrial electrometallurgy and related to the passage of electric current within liquid metal or fused salts it is necessary to examine the flows arising near inhomogeneous inclusions in the current-carrying fluid. These effects include the deposition of non-conducting impurities on the walls of channels in induction smelting furnaces, an organized motion of the metal droplets during the processes of electroslag welding and remelting, and others. A knowledge of the mechanisms by which the electric current affects rigid and gaseous inclusions, in the fluid may prove to be useful in the design of devices for particle separation, for composite material production, and so on. The issues concerning the behaviour of objects in the current-carrying fluid also include electrically propelled bodies containing an internal electric current source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bojarevičs V. V., Millere R. P., and Chudnovsky A. Yu.: Forces acting on bodies in a current-carrying fluid. Magnitnaya Gidrodinamika (1985), No. 1, pp. 67–72.

    Google Scholar 

  2. Bojarevičs V. V. and Shcherbinin E. V.: The electric current flow past the cone. Magnitnaya Gidrodinamika (1974), No. 4, pp. 38–42.

    Google Scholar 

  3. Bucenieks I. E., Kompan Ya. Yu., Sharamkin V. I., Shilova E. I., and Shcherbinin E. V.: Experimental study of MHD processes in electrical welding. Magnitnaya Gidrodinamika (1975), No. 3, pp. 143–148.

    Google Scholar 

  4. Chow Ch. Y.: Flow around a nonconducting sphere in a current carrying fluid. Phys. Fluids (1966), 9(5), pp. S. 33–36.

    Article  Google Scholar 

  5. Chow Ch. Y.: Hydromagnetic wake around a nonconducting sphere. Phys. Fluids (1967), 10(1), pp. 234–236.

    Article  ADS  Google Scholar 

  6. Chow Ch. Y. and Billings D. F.: Current-carrying fluid past a nonconducting sphere at low Reynolds number. Phys. Fluids (1967), 10(4), pp. 871–873.

    Article  ADS  Google Scholar 

  7. Chow Ch. Y. and Halat J. A.: Drag of a sphere of arbitrary conductivity in a current-carrying fluid. Phys. Fluids (1969), 12(11), pp. 2317–2322.

    Article  ADS  Google Scholar 

  8. Gel’fgat Yu. M., Lielausis O. A., and Shcherbinin E. V.: Liquid Metal under the Action of Electromagnetic Forces. Riga: Zinatne, 1976 (In Russian).

    Google Scholar 

  9. Graneau P.: Electromagnetic jet-propulsion in the direction of current flow. Nature (1982), 295, pp. 311–312.

    Article  ADS  Google Scholar 

  10. Gupta R. K.: Flow induced by the presence of a conducting porous sphere in a fluid carrying a uniform current. ZAMM (1976), 56(5), S. 191–196.

    Article  ADS  MATH  Google Scholar 

  11. Happel J. and Brenner H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, 1965.

    Google Scholar 

  12. Kompan Ya. Yu., Hizhnyak K. K., Bucenieks I. E., Sharamkin V. I., and Shcherbinin E. V.: Modeling studies of flows in slag bath of titanium electrical welding. Titanium Casting. Kiev: Naukova Dumka, 1976, pp. 109–115 (In Russian).

    Google Scholar 

  13. Lamb H.: Hydrodynamics. New York, 1945.

    Google Scholar 

  14. Loitsyanskij L. G.: Laminar Boundary Layer. Moscow: GIFML, 1962 (In Russian).

    Google Scholar 

  15. Oreper G. M.: Effect of the electric current on the velocity field around the nonconducting drop and on its dissolution rate in a conducting liquid. Magnitnaya Gidrodinamika (1974), No. 3, pp. 52–56.

    Google Scholar 

  16. Oreper G. M.: Numerical research of the spherical hydrodynamics and mass-transfer in a current-carrying fluid. Magnitnaya Gidrodinamika (1979), No. 3, pp. 38–42.

    Google Scholar 

  17. Oreper G. M.: Influence of electrovortex flow on hydrodynamics and mass transfer of a sphere moving in current-carrying fluid. Magnitnaya Gidrodinamika (1980), No. 1, pp. 72–76.

    Google Scholar 

  18. Orszag S.: Numerical simulations of incompressible flows within simple boundaries. 1. Galerkin (spectral) representations. Studies Appl. Math. (1971), 50, pp. 293–327.

    MathSciNet  MATH  Google Scholar 

  19. Sharamkin V. I. and Shcherbinin E. V.: Electrovortex flow at discharge between hyper-boloidal electrodes. Magnitnaya Gidrodinamika (1978), No. 2, pp. 32–38.

    Google Scholar 

  20. Shilova E. I.: On the purification of liquid metals from nonconducting particles in the magnetic field produced by the current. Magnitnaya Gidrodinamika (1975), No. 2, pp. 142–144.

    Google Scholar 

  21. Sozou C: Flow induced by the presence of a non-conducting ellipsoid of revolution in fluid carrying a uniform current. J. Fluid Mech. (1970), 42(1), pp. 129–138.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Sozou C: Slow flow of a fluid carrying a uniform current past a nonconducting ellipsoid of revolution. J. Fluid Mech. (1970), 43(1), pp. 121–127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Sozou C: The development of magnetohydrodynamic flow due to the passage of an electric current past a sphere immersed in a fluid. J. Fluid Mech. (1972), 56(3), pp. 497–503.

    Article  ADS  MATH  Google Scholar 

  24. Sozou C: Flow induced by the presence of a spheroid in a fluid carrying a uniform electric current. Intern. J. Eng. Sci. (1977), 15, pp. 345–358.

    Article  MATH  Google Scholar 

  25. Van Dyke M. D.: Perturbation Methods in Fluid Mechanics. New York: Academic Press, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bojarevičs, V., Freibergs, J.A., Shilova, E.I., Shcherbinin, E.V. (1989). Bodies in a current-carrying fluid. In: Electrically Induced Vortical Flows. Mechanics of Fluids and Transport Processes, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1163-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1163-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7017-1

  • Online ISBN: 978-94-009-1163-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics