Periodic electrically induced flows

  • V. Bojarevičs
  • J. A. Freibergs
  • E. I. Shilova
  • E. V. Shcherbinin
Part of the Mechanics of Fluids and Transport Processes book series (MFTP, volume 9)


Periodic distributions of electric current density can be examined most conveniently and naturally in cylindrical coordinates. The corresponding periodic electrically induced flows constitute a new class of flows, which is interesting from the viewpoint either of novel physical effects or of applications.


Pressure Drop Secondary Flow Drag Reduction Electromagnetic Force Stream Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean W. R.: The stream-line motion of liquid in a curved pipe. Phys. Mag. A (1928), ser. 7, Vol. 5, No. 30, pp. 673–695.Google Scholar
  2. 2.
    Dennis S. C. R.: Calculation of the steady flow through a curved tube using a new finite-difference method. J. Fluid Mech. (1980), 99(3), pp. 449–468.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Freibergs J. Ž.: Transit electrovortex flow in a corrugated tube with longitudinal current. Magnitnaya Gidrodinamika (1978), No. 2, pp. 27–31.Google Scholar
  4. 4.
    Freibergs J. Ž.: Flow in a toroidal tube with current. Magnitnaya Gidrodinamika (1981), No. 4, pp. 61–66.Google Scholar
  5. 5.
    Freibergs J. Ž. and Shcherbinin E. V.: Axisymmetric electrovortex flow in the tube with periodical contractions. Magnitnaya Gidrodinamika (1977), No. 4, pp. 46–54.Google Scholar
  6. 6.
    Gradshteyn I. C. and Ryzhik I. M: Tables of Integrals, Sums, and Series. Moscow: Publishing House of Physical and Mathematical Literature, 1963 (In Russian).Google Scholar
  7. 7.
    Happel J. and Brenner H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, 1965.Google Scholar
  8. 8.
    Landau L. D. and Lifshits E.M.: Electrodynamics of Continuous Media. Moscow: Nauka, 1982 (In Russian).Google Scholar
  9. 9.
    Millere R. P. and Freibergs J. Ž.: Effect of periodic electrovortex flow on laminar flow through a tube. Magnitnaya Gidrodinamika (1980), No. 2, pp. 52–56.ADSGoogle Scholar
  10. 10.
    Millere R. P. and Sulejmanov R. Kh.: EVF in a tube with varying electrical conductivity of wall. 12th Riga Conference on MHD. Salaspils, 1987, vol. 1, pp. 223–226 (In Russian).Google Scholar
  11. 11.
    Olson D. B. and Spence T. W.: Asymmetric disturbances in the frontal zone of a Gulf Stream. J. Geophys. Research (1978), 83(C9), pp. 4691–4695.ADSCrossRefGoogle Scholar
  12. 12.
    Starr V. P.: Physics of Negative Viscosity Phenomena. McGraw Hill Book Co., 1968.Google Scholar
  13. 13.
    Sulejmanov R. Kh.: Axisymmetric electrovortex flow in a variable cross-section area tube with an internal cylinder. Magnitnaya Gidrodinamika (1983), No. 3, pp. 90–94.Google Scholar
  14. 14.
    Sulejmanov R. Kh. and Freibergs J. Ž.: Pump effect of electrovortex flow in a corrugated tube. Magnitnaya Gidrodinamika (1985), No. 4, pp. 98–104.Google Scholar
  15. 15.
    Toyakoglu H. C: Steady laminar flows of an incompressible fluid in curved pipes. J. Math. Mech. (1967), 16(12), pp. 1321–1337.Google Scholar
  16. 16.
    Uberoi M. S.: Magnetohydrodynamics at small magnetic Reynolds numbers. Phys. Fluids (1962), 5 (4), pp. 401–406.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Uberoi M. S. and Chow Ch.-Y.: Magnetohydrodynamics of flow between two coaxial tubes. Phys. Fluids (1966), 9(5), pp. 927–932.ADSCrossRefGoogle Scholar
  18. 18.
    Van Dyke M.: Extended Stokes series: laminar flow through a loosely coiled pipe. J. Fluid Mech. (1978), 86(1), pp. 129–145.ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Votsish A. D. and Kolesnikov Yu. B.: The anomalous impulse transfer in MHD shear flow with two-dimensional turbulence. Magnitnaya Gidrodinamika (1976), No. 4, pp. 47–52.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • V. Bojarevičs
    • 1
  • J. A. Freibergs
    • 1
  • E. I. Shilova
    • 1
  • E. V. Shcherbinin
    • 1
  1. 1.Institute of PhysicsLatvian S.S.R. Academy of SciencesRiga, SalaspilsRussia

Personalised recommendations