Solutions in spherical coordinates

  • V. Bojarevičs
  • J. A. Freibergs
  • E. I. Shilova
  • E. V. Shcherbinin
Part of the Mechanics of Fluids and Transport Processes book series (MFTP, volume 9)


With this chapter we begin a systematic study of axisymmetric electrically induced vortex flows, the governing equations of which have been presented in the previous chapter. The study will begin with so-called exact solutions, by which we mean those solutions obtained from the full equations of motion without a priori estimates and omission of any terms, say, after the order-of-magnitude analysis (this does not apply to the electrodynamic quantities, which will conform to assumptions simplifying the electrodynamic part of problem).


Symmetry Axis Stream Function Momentum Flux Electromagnetic Force Vortex Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajayi O. O.: The transient Stokes flow induced by a point source of electric current. Meccanica (1985), 20, pp. 12–17.zbMATHCrossRefGoogle Scholar
  2. 2.
    Ajayi O. O., Sozou C, and Pickering W. M.: Nonlinear fluid motions in a container due to the discharge of an electric current. J. Fluid Mech. (1984), 148, pp. 285–300.ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Andrews J. G. and Craine R. E.: Fluid flow in a hemisphere induced by a distributed source of current. J. Fluid Mech. (1978), 84(2), pp. 281–290.ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Atthey D. R.: A mathematical model for fluid flow in a weld pool at high currents. J. Fluid Mech. (1980), 98(4), pp. 787–801.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Batchelor G. K. and Gill A. E.: Analysis of the stability of axisymmetric jets. J. Fluid Mech. (1962), 14(4), pp. 529–551.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Batchelor G. K.: An Introduction to Fluid Dynamics. Cambridge at the University Press, 1970.Google Scholar
  7. 7.
    Bojarevičs V. V.: On the application limits of an exact solution of MHD equations. Magnitnaya Gidrodinamika (1976), No. 4, pp. 140–141.Google Scholar
  8. 8.
    Bojarevičs V. V.: Electrovortex flow at a hemispherical electrode. Magnitnaya Gidrodinamika (1978), No. 4, pp. 77–81.Google Scholar
  9. 9.
    Bojarevičs V. V. and Millere R.: Amplification of rotation of the meridional electrovortex flow in a hemisphere. Magnitnaya Gidrodinamika (1982), No. 4, pp. 51–56.Google Scholar
  10. 10.
    Bojarevičs V. V. and Shilova E. I.: Landau-Squire jet in radially diverging electric current. Magnitnaya Gidrodinamika (1977), No. 3, pp. 89–94.Google Scholar
  11. 11.
    Cantwell B. J.: Transition in the axisymmetric jet. J. Fluid Mech. (1981), 104, pp. 369–386.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Clayton B. R. and Massey B. S.: Exact similar solution for an axisymmetric laminar boundary layer on a circular cone. AIAA J. (1979), 17(7), pp. 785–786.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Cooke J. C.: On Pholhausen’s method with application to a swirl problem of Taylor. J. Aeronautical Sci. (1952), 19(7), pp. 486–490.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cowley M. D.: On electrode jets. In: Proc. 11th Intern, conf. phenomena ionized gases. Prague, 1973, p. 249.Google Scholar
  15. 15.
    Dangey J. W.: Cosmic Electrodynamics. Cambridge at the University Press, 1958.Google Scholar
  16. 16.
    Germain P.: Cours de Mechanique des Milieux Continus. Paris: Massan et Cie, 1973.Google Scholar
  17. 17.
    Goldshtik M. A.: A paradoxical solution of Navier-Stokes equation. Prikladnaya Mekhanika i Matematika (1960), 24(4), pp. 610–621.Google Scholar
  18. 18.
    Goldshtik M. A.: Vortex Flows. Novosibirsk: Nauka, 1981 (In Russian).Google Scholar
  19. 19.
    Goldshtik M. A. and Silant’ev B. A.: To the theory of laminar submerged jets. Prikladnaya Matematika i Teoreticheskaya Fizika (1965), No. 5, pp. 149–152.Google Scholar
  20. 20.
    Golubinskij A. A. and Sichev V. V.: About a similarity solution of Navier-Stokes equations. Uchenye Zapiski TSAGI (1976), 7(6), pp. 11–17.ADSGoogle Scholar
  21. 21.
    Guilloud J. C. and Arnault J.: Sur une nouvelle classe de solutions exactes des equations de Navier-Stokes. C. R. Acad. Sci., ser. A (1971), 273, pp. 517–520.zbMATHGoogle Scholar
  22. 22.
    Hamel G.: Spiralformige Bewegung zäher Flüssigkeiten. Iber. Dt. Math.-Ver. (1916), 25, S. 34–60.zbMATHGoogle Scholar
  23. 23.
    Jeffery G. B.: Steady motion of a viscous fluid. Phil. Mag., ser. 6 (1915), 29, p. 455.CrossRefGoogle Scholar
  24. 24.
    Joukov M. F., Koroteev A. S., and Uryukov B. A.: Applied Dynamics of Thermal Plasma. Novosibirsk: Nauka, 1975 (In Russian).Google Scholar
  25. 25.
    Kashkarov V. P.: Some exact solutions in the theory of incompressible fluid jets. Investigations in physical basis of working process in stoves and furnaces. Ed. by Vulis L. A. Alma-Ata: Kazakhian Academy of Sciences (1957), pp. 54–63 (In Russian).Google Scholar
  26. 26.
    Kidd G. J. and Farris G. J.: Potential Vortex Flow Adjacent to a Stationary Surface. Trans, of the ASME. Ser. E. J. Appl. Mech. (1968), 35, No. 2.Google Scholar
  27. 27.
    Landau L. D.: New exact solution of Navier-Stokes equations. Doklady Akademii Nauk SSSR (1944), 43(7), pp. 299–301.Google Scholar
  28. 28.
    Landau L. D. and Lifshits E. M.: Hydrodynamics. Moscow: Nauka, 1986 (In Russian).Google Scholar
  29. 29.
    Leibowich S.: The structure of vortex breakdown. Ann. Rev. Fluid Mech. (1978), 10, pp. 221–246.ADSCrossRefGoogle Scholar
  30. 30.
    Levakov V. S. and Lyubavskij K. V.: The effect of longitudinal magnetic field on electric arc with nonmelting tungsten electrode. Svarochnoe Proizvodstvo (1965), No. 10, pp. 9–12.Google Scholar
  31. 31.
    Loitsyanskij L. G.: Propagation of swirling jet in unbounded space filled with the same liquid. Prikladnaya Matematika i Mekhanika (1953), 17(1), pp. 3–16.Google Scholar
  32. 32.
    Loitsyanskij L. G.: Radial jet in space filled by the same liquid. Trudy Leningradskogo Politekhnicheskogo Instituta (1953), No. 5, pp. 5–14.Google Scholar
  33. 33.
    Loitsyanskij L. G.: Fluid and Gas Mechanics. Moscow: Nauka, 1973 (In Russian).Google Scholar
  34. 34.
    Lundquist S.: On the hydromagnetic viscous flow generated by a diverging electric current. Ark. Fys. (1969), 40(5), pp. 89–95.Google Scholar
  35. 35.
    Moffatt H. K.: Some problems in the magnetohydrodynamics of liquid metals. Ztschr. Angew. Math. Mech. (1978), 58, S. T65–T71.Google Scholar
  36. 36.
    Morgan A. J. A.: On a class of laminar viscous flows within one or two bounding cones. Aeronautical Quart. (1956), 7, pp. 225–239.Google Scholar
  37. 37.
    Narain J. P. and Uberoi M. S.: Magnetohydrodynamics of conical flows. Phys. Fluids (1971), 14(12), pp. 2687–2692.ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Narain J. P. and Uberoi M. S.: Fluid motion caused by conical currents. Phys. Fluids (1973), 16(6), pp. 940–942.ADSCrossRefGoogle Scholar
  39. 39.
    Pao H. P. and Long R. R.: Magnetohydrodynamic jet-vortex in a viscous conducting fluid. Quart. J. Mech. Appl. Math. (1966), 19(1), pp. 1–26.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Potsch K.: Schwache Auftriebseffekte in laminaren, vertikalen, runden Freistrahlen. Acta Mech. 36(1/2), pp. 1–14.Google Scholar
  41. 41.
    Ranger K. B.: Hydromagnetic momentum source. Phys. Fluids (1965), 8(9), pp. 1747–1748.ADSCrossRefGoogle Scholar
  42. 42.
    Rumer Yu. B.: Submerged jet problem. Prikladnaya Matematika i Mekhanika (1952), 16(2), pp. 255–256.MathSciNetzbMATHGoogle Scholar
  43. 43.
    Rumer Yu. B.: Convective diffusion in submerged jet. Prikladnaya Matematika i Mekhanika (1953), 17(6), pp. 743–744.MathSciNetzbMATHGoogle Scholar
  44. 44.
    Samerville G. M.: Electric Arc. London: Methuen and Co., 1959.Google Scholar
  45. 45.
    Slezkin N. A.: Viscous fluid motion within two cones. Uchenye Zapiski MGU (1934), No. 2, pp. 83–87.Google Scholar
  46. 46.
    Schlichting H.: Boundary Layer Theory. New York: McGraw-Hill, 1960.zbMATHGoogle Scholar
  47. 47.
    Schneider W.: Flow induced by jets and plumes. J. Fluid Mech. (1981), 108, pp. 55–65.ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    Schwiderski E. W.: On the axisymmetric vortex flow over a flat surface. Trans, of the ASME. Ser. E, J. Appl. Mech. (1969), 36(3), pp. 614–619.zbMATHGoogle Scholar
  49. 49.
    Shcherbinin E. V.: On a kind of exact solutions in MHD. Magnitnaya Gidrodinamika (1969), No. 4, pp. 46–58.Google Scholar
  50. 50.
    Shcherbinin E. V.: Viscous Fluid Jet Flows in Magnetic Field. Riga: Zinatne, 1973 (In Russian).Google Scholar
  51. 51.
    Shcherbinin E. V.: Jet flows in an electric arc. Magnitnaya Gidrodinamika (1973), No. 4, pp. 66–72.Google Scholar
  52. 52.
    Shcherbinin E. V. and Yakovleva E. E.: An electrovortex flow in a spheroidal container. Magnitnaya Gidrodinamika (1986), No. 4, pp. 64–69.Google Scholar
  53. 53.
    Shercliff J. A.: Fluid motions due to an electric current source. J. Fluid Mech. (1970), 40(2), pp. 241–250.ADSzbMATHCrossRefGoogle Scholar
  54. 54.
    Shilova E. I. and Shcherbinin E. V.: Some exact solutions of the equations of motion in MHD. Magnitnaya Gidrodinamika (1969), No. 4, pp. 59–64.Google Scholar
  55. 55.
    Shilova E. I. and Shcherbinin E. V.: Some aspects of theoretical study of a three-dimensional MHD flow in a diffuser. Magnitnaya Gidrodinamika (1971), No. 1, pp. 11–17.Google Scholar
  56. 56.
    Shilova E. I. and Shcherbinin E. V.: MHD vortex flow in a cone. Magnitnaya Gidrodinamika (1971), No. 2, pp. 33–38.Google Scholar
  57. 57.
    Sozou C.: On fluid motions induced by an electric current source. J. Fluid Mech. (1971), 46(1), pp. 25–32.MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Sozou C.: On some similarity solutions in magnetohydrodynamics. J. Plasma Phys. (1971), 6(2), pp. 331–341.ADSCrossRefGoogle Scholar
  59. 59.
    Sozou C.: On magnetohydrodynamic flows generated by an electric current discharge. J. Fluid Mech. (1974), 63(4), pp. 665–671.ADSzbMATHCrossRefGoogle Scholar
  60. 60.
    Sozou C.: Development of the flow field of a point force in an infinite fluid. J. Fluid Mech. (1979), 91(3), pp. 541–546.MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Sozou C. and English H.: Fluid motions induced by an electric current discharge. Proc. Roy. Soc. London (1972), A329, pp. 71–81.ADSGoogle Scholar
  62. 62.
    Sozou C. and Pickering W. M.: The development of magnetohydrodynamic flow due to an electric current discharge. J. Fluid Mech. (1975), 70(3), pp. 509–517.ADSzbMATHCrossRefGoogle Scholar
  63. 63.
    Sozou C. and Pickering W. M.: Magnetohydrodynamic flow due to the discharge of an electric current in a hemispherical container. J. Fluid Mech. (1976), 73(4), pp. 641–650.ADSzbMATHCrossRefGoogle Scholar
  64. 64.
    Sozou C. and Pickering W. M.: The round laminar jet: the development of the flow field. J. Fluid Mech. (1977), 80(4), pp. 673–683.ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Sozou C. and Pickering W. M.: Magnetohydrodynamic flows in a container due to the discharge of an electric current from a finite size electrode. Proc. Roy. Soc. London (1978), A362, pp. 509–523.ADSGoogle Scholar
  66. 66.
    Squire H. B.: The round laminar jet. Quart. J. Mech. Appl. Math. (1951), 4(3), pp. 321–329.MathSciNetzbMATHGoogle Scholar
  67. 67.
    Squire H. B.: Jet emerging from a hole in a plane wall. Phil. Mag., ser. 7 (1952), 43(343), pp. 942–945.MathSciNetzbMATHGoogle Scholar
  68. 68.
    Squire H. B.: Radial jets. In: 50 Jahre Grenaschichforschung. Braunschweig, 1954, S. 47–54.Google Scholar
  69. 69.
    Tsuker M. S.: Swirling jet propagating in space filled by the same liquid. Prikladnaya Matematika i Mekhanika (1955), 19(4), pp. 500–503.Google Scholar
  70. 70.
    Vulis L. A. and Kashkarov V. P.: Theory of Viscous Fluid Jets. Moscow: Nauka, 1965 (In Russian).Google Scholar
  71. 71.
    Weber H. E.: The boundary layer inside a conical surface due to swirl. J. Fluid Mech. (1956), 23(4), pp. 587–592.zbMATHGoogle Scholar
  72. 72.
    Wu Ch.-Sh.: A class of exact solutions of the magnetohydrodynamic Navier-Stokes equations. Quart. J. Mech. Appl. Math. (1961), 14(1), pp. 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Yatseyev V. I.: About a class of exact solutions of viscous fluid equations of motion. Zhurnal Tekhnicheskoj Fiziki (1950), 20(11), pp. 1031–1034.Google Scholar
  74. 74.
    Yih C.-S., Wu F., Garg A. K., and Leibovich S.: Conical vortices: a class of exact solutions of the Navier-Stokes equations. Phys. Fluids (1982), 25(12), pp. 2147–2158.MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • V. Bojarevičs
    • 1
  • J. A. Freibergs
    • 1
  • E. I. Shilova
    • 1
  • E. V. Shcherbinin
    • 1
  1. 1.Institute of PhysicsLatvian S.S.R. Academy of SciencesRiga, SalaspilsRussia

Personalised recommendations