Strontium-isotope stratigraphy: applications in basin modelling and reservoir correlation

  • P. C. Smalley
  • A. Råheim
  • Y. Rundberg
  • H. Johansen
Conference paper


The 87Sr/86Sr isotope ratio is homogeneous in sea water at any one time, but has fluctuated during geological time along the path which can be reconstructed by the Sr-isotopic analysis of marine precipitates (e.g. carbonate or phosphate fossils) of known age. The resultant ‘seawater curve’ can be used as a relative dating tool by analysing carbonate/phosphate fossils from a marine sediment, locating its position on the curve and reading off the corresponding age. Such ages are independent of biofacies or faunal provincialism. The hypothetical chronological resolution, which depends upon analytical reproducibility and the gradient of the seawater curve during the period of interest, lies between 0.4 and 1.0 Ma for much of the Cenozoic and Mesozoic. However, the practical resolution is limited in sediments of certain ages by uncertainties in the definition of the seawater curve; this may be improved with further work.


Sequence Boundary Marine Carbonate Strontium Isotope Hydrocarbon Exploration Cenozoic Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berggren, W. A., Kent, D. V., Flynn, J. J. and Van Couvering, J. A. 1985. Cenozoic geochronology. Geol. Soc. Am. Bull., 96, 1407–1418.CrossRefGoogle Scholar
  2. Brass, G. W. 1976. The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model. Geochim. Cosmochim. Acta, 40, 721–730.CrossRefGoogle Scholar
  3. Brevart, O. and Allègre, C. J. 1977. Strontium isotopic ratios in limestone through geological time as a memory of geodynamic regimes. Bull. Soc. Géol. Fr., 90, 1253–1257.Google Scholar
  4. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F. and Otto, J. B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.CrossRefGoogle Scholar
  5. Chaudhuri, S. and Clauer, N. 1986. Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic Eon. Chem. Geol. (Isotope Geoscience Section), 59, 293–303.CrossRefGoogle Scholar
  6. DePaolo, D. J. 1986. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Geology, 14, 103–106.CrossRefGoogle Scholar
  7. DePaolo, D. J. and Ingram, B. L. 1985. High-resolution stratigraphy with strontium isotopes. Science, 227, 938–941.CrossRefGoogle Scholar
  8. Elderfield, H. 1986. Strontium isotope stratigraphy. Palaeogeogr. Palaeoclimat. Palaeoecol., 57, 71–90.CrossRefGoogle Scholar
  9. Elderfield, H. and Gieskes, J. M. 1982. Sr isotopes in interstitial waters of marine sediments from Deep Sea Drilling Project cores. Nature, 300, 493–497.CrossRefGoogle Scholar
  10. Elderfield, H. and Greaves, M. J. 1981. Strontium isotope geochemistry of Icelandic geothermal systems and implications for sea water chemistry. Geochim. Cosmochim. Acta, 45, 2201–2212.CrossRefGoogle Scholar
  11. Faure, G. 1982. The marine-strontium geochronometer. In: Odin, G. S. (ed.), Numerical Dating in Stratigraphy, Wiley, New York, 73–79.Google Scholar
  12. Faure, G. 1986. Principles of Isotope Geology, Wiley, New York.Google Scholar
  13. Haq, B. U., Hardenbol, J. and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1157–1167.CrossRefGoogle Scholar
  14. Hess, J., Bender M. L. and Schilling, J. -G. 1986. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, 231, 979–984.CrossRefGoogle Scholar
  15. Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and oceans, Princeton University Press, Princeton, N. J.Google Scholar
  16. Hubbard, R. J. 1988. Age and significance of sequence boundaries on Jurassic and early Cretaceous rifted Continental margins AAPG Bull, 72, 49–72.Google Scholar
  17. Hurst, R. W. 1986. Strontium isotopic chronostratigraphy and correlation of the Miocene Monterey Formation in the Ventura and Santa Maria basins of California. Geology, 14, 459–462.CrossRefGoogle Scholar
  18. Kent, D. V. and Gradstein, F. M. 1985. A Cretaceous and Jurassic geochronology. Geol. Soc. Am. Bull., 96, 1419–1427.CrossRefGoogle Scholar
  19. Knittel, U. and Daniels, U. 1987. Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines): additional evidence for a Paleozoic age of a metamorphic complex in the Philippine island arc. Geology, 15, 136–138.CrossRefGoogle Scholar
  20. Koepnick, R. B., Burke, W. H., Denison, R. E., Hetherington, E. A., Nelson, H. F., Otto, J. B. and Waite, L. E. 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data. Chem. Geol. (Isotope Geoscience Section), 58, 55–81.CrossRefGoogle Scholar
  21. Kovach, J. 1980. Variations in the strontium isotopic composition of seawater during Paleozoic time determined by analysis of conodonts. Geol. Soc. Am. Abstr. Prog., 12, 465.Google Scholar
  22. Palmer, M. R. and Elderfield, H. 1985. Sr isotopic composition of seawater over the past 75 Myr. Nature, 314, 526–528.CrossRefGoogle Scholar
  23. Peterman, Z. E., Hedge, C. E. and Tourtelot, H. A. 1970. Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochim. Cosmochim. Acta, 34, 105—120.CrossRefGoogle Scholar
  24. Popp, B. N., Podosek, F. A., Brannon, J. C, Anderson, T. F. and Pier, J. 1986. 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geochim. Cosmochim. Acta, 50, 1321–1328.CrossRefGoogle Scholar
  25. Rundberg, Y. 1989. Tertiary sedimentary history and basin evolution of the Norwegian northern North Sea between 60°N and 62°N — an integrated approach. Dr. ing. thesis, Univ. Trondheim.Google Scholar
  26. Rundberg, Y. and Smalley, P. C. 1989. High-resolution dating of Cenozoic sediments from the northern North Sea using 87Sr/86Sr stratigraphy. AAPG, Bull. 73, 298–308.Google Scholar
  27. Smalley, P. C, Nordaa, A. and Råheim, A. 1986. Geochronology and paleothermometry of Neogene sediments from the Vøring Plateau using Sr, C and O isotopes. Earth Planet. Sci. Lett., 78, 368–378.CrossRefGoogle Scholar
  28. Smalley, P. C, Qyale, G. and Qyale, H. 1989. Some ages from Leg 104 Site 642 obtained by Rb-Sr glauconite dating and Sr isotope stratigraphy. In: Eldholm, O., Thiede, J., Taylor, E. et al. (eds), Proceedings of the Ocean Drilling Program, in press.Google Scholar
  29. Staudigel, H., Doyle, P. and Zindier, A. 1985. Sr and Nd isotope systematics in fish teeth. Earth Planet. Sci. Lett., 76, 45–56.CrossRefGoogle Scholar
  30. Swinburne, N. H. M. 1988. Correlation of sequences of upper-most Cretaceous carbonates using Sr-isotope chronology. Chem. Geol., 70, 17 (abstr.).CrossRefGoogle Scholar
  31. Wadleigh, M. A., Veizer, J. and Brooks, C. 1985. Strontium and its isotopes in Canadian rivers: fluxes and global implications. Geochim. Cosmochim. Acta, 49, 1727–1736.CrossRefGoogle Scholar
  32. Wickman, F. E. 1948. Isotope ratios: a clue to the age of certain marine sediments. J. Geol., 56, 61–66.CrossRefGoogle Scholar

Copyright information

© Norwegian Petroleum Society 1989

Authors and Affiliations

  • P. C. Smalley
    • 1
  • A. Råheim
    • 1
  • Y. Rundberg
    • 2
  • H. Johansen
    • 1
  1. 1.Institute for Energy TechnologyKjellerNorway
  2. 2.Department of GeologyNorwegian Institute of TechnologyTrondheim-NTHNorway

Personalised recommendations