Materials Constraints in the High Temperature Industrial Technologies

  • B. Meadowcroft
  • D. Lloyd
  • K. Joon
  • S. B. v.d. Molen
  • E. H. P. Cordfunke
  • F. Negrini
  • F. J. Vaes
  • S. F. Pugh
  • S. Newsam
  • J. F. G. Condé
  • D. J. Godfrey
  • J. T. Van Konijnenburg
  • J. Morlet
  • O. De Pous
  • D. Brun
  • Stein Heurtey

Abstract

This topic is concerned solely with those aspects of combustion technology where materials are exposed directly to the combustion gas. It will be considered in two parts; first, materials requirements within the combustion zone itself, and second, requirements for materials exposed to downstream combustion gases. It excludes the detailed requirements of gas turbines which are used to expand pressurised combustion gases such as in oil and coal fired combined cycle applications, and in direct coal-fired gas turbines, and also excludes gasification systems, and M.H.D.. The requirements of materials relevant to their exposure to steam, such as in power generation systems, are dealt with in section 4.1.2.

Keywords

Heat Exchanger Blast Furnace Silicon Nitride Oxide Dispersion Strengthened High Temperature Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Meadowcroft, D.B., Mats. Sci. and Eng., 88, 313–320 pp. (1987)CrossRefGoogle Scholar
  2. (2).
    Vincent, R.Q., Poston, J.M. and Smith, B.F., Proc. Int. Conf. on Fluidised Bed Combustion, ed. Mustonen, J.P., ASME, 672 pp. (1987)Google Scholar
  3. (3).
    Rademakers, P.L.F., Bos, L., van Wortel, J.C. and Kolster, B.H., Proc. Conf. Fluidised Bed Combustion - Is it achieving its Promise? Institute of Energy, London (1984)Google Scholar
  4. (4).
    “The Control of Fireside Corrosion in Power Station Boilers (Third Edition)”, Laxton, J.W., Meadowcroft, D.B., Clarke, F., Flatley, T., King, C.W. and Morris, C.W., Central Electricity Generating Board, Newgate St., London (1988) (5) Flatley, T. and Thursfield, T., J. Mats. Energy Systems, 8, 92-105 pp. (1986)Google Scholar
  5. (6).
    Asbury, F.E. and Brooks, S., Proc. Conf. Advances in Materials Technology for Fossil Power Plants, American Society for Metals, Chicago (1987)Google Scholar
  6. (7).
    Meadowcroft, D.B. and Stringer, J., Mats. Sci. and Tech., 3 562–570 pp. (1987)Google Scholar
  7. (8).
    Electric Power Research Institute; Technical Brief to Contract RP 2387-3 “Indirect-Fired Gas Turbines” (Oct. 1987)Google Scholar
  8. (1).
    “Gas from Coal”, A National Coal Board Report, (1983).Google Scholar
  9. (2).
    Schroter, H.J., Schendler, W. and Weber, H., High Temperature Materials Corrosion in Coal Gasification Atmospheres, Edt. Norton, J.R., Elsevier Applied Science Publishers, (1984).Google Scholar
  10. (3).
    The British Gas/Lurgi Slagging Gasifier 2 Status, Applications and Economics, Evans, R. and Hiller, W., A British Gas International Consultancy Service Publications, (1986-1987).Google Scholar
  11. (4).
    “The Texaco Coal Gasification Process - Synthesis Gas for Chemical Feedstocks”, Crouch, W.B., International Coal Conversion Conference, (1982), Pretoria, South Africa.Google Scholar
  12. (5).
    “Materials of Construction for Advanced Coal Conversion Systems”, Nangia, V.K., ESCOE, Noyes Data Corporation, (1982).Google Scholar
  13. (6).
    “Design Properties of Steels for Coal Conversion Vessels”, Gabe, D.E., 4th Annual Conf. on “Materials for Coal Conversion and Utilisation”, U.S. DOE, Gaithersburg, Maryland, USA, (1979).Google Scholar
  14. (7).
    “The Behaviour of High Temperature Filter Materials in Hot Gasifier and Combustor Atmospheres1, Oakey, J.E. and Reed, G.P., I. Chem. E. Symposium Series 99, Gas Cleaning at High Temperatures, Pergamon Press, (1986).” (8) Dial, R.H., J. of the Canadian Ceramic Soc., Vol. 43, pp. 65, (1973).Google Scholar
  15. (9).
    “Refractories for Coal Gasification - The State of the Art in the U.S.” Kennedy, C.R. and Schlett, P.E., Ceramics in Advanced Energy Technologies, Proc. of the European Colloquium, J.R.C., Petten, NH, (1982), D. Reidel Publishing Co.Google Scholar
  16. (10).
    “Materials Requirements for Coal Gasification Combined Cycle Power Plants”, Proc. of Int. Gas Research Conf., Los Angeles, pp. 454, (1981).Google Scholar
  17. (11).
    “The Corrosion of Refractories in Coal Gasifiers at Elevated Temperature”, Yurek, G.J., Conf. on Corrosion/Erosion of Coal Conversion System Materials, NACE Pub., (1979).Google Scholar
  18. (12).
    “Design of Refractories for Coal Gasification and Combustion Systems”, Vojnovich, T., EPRI Rept. No., AF1151, (1979).Google Scholar
  19. (13).
    “Design of Refractories for Resistance to High Temperature Erosion-Corrosion”, Vaux, W.G., EPRI Rept. No., AP-1955, (1981).Google Scholar
  20. (14).
    “Materials of Construction II - Refractory and Ceramic”, Stringer, J., High Temperature Materials Corrosion in Coal Gasification Atmospheres, Edt. Norton, J.R., Elsevier Applied Science Publishers, (1984).Google Scholar
  21. (15).
    “Improvement of the Mechanical Reliability of Monolithic Refractory Linings for Coal Gasification Linings”, Anderson, E.M., Glasser, R.P., Schroedl, M.A., 5th Annual Conf. on Materials for Coal Conversion and Utilisation, U.S. DOE, Gaithersburg, Maryland, U.S.A., (1980).Google Scholar
  22. (16).
    Bray, D.J., Smyth, J.R. and McGee, T.D., J. American Ceramic Soc., Vol. 59, No. 7, pp. 706, (1980).Google Scholar
  23. (17).
    “Refractory Applications in Coal Gasifiers”, Bakker, W.T., 3rd Annual Conf. on “Materials for Coal Gonversion and Utilisation’, U.S. DOE, Gaithersburg, Maryland, U.S.A., (1978).”Google Scholar
  24. (18).
    “The Properties and Performance of Materials in the Coal Gasification Environment”, Ed. Hill, V.L., Am. Soc. of Metals, (1981).Google Scholar
  25. (19).
    “Thermodynamic Phase Stability Diagrams for the Analysis of Corrosion Reactions in Coal Gasification/Combustion Atmospheres”, Hemmings, P.L. and Perkins, R.A., EPRI Rept. No., FP539, (1977).Google Scholar
  26. (20).
    “High Temperature Alloy Corrosion in Coal Conversion Environments”, Natesan, K., High Temperature Corrosion, NACE Pub. 6, (1981).Google Scholar
  27. (21).
    “Evaluation of Coated and Clad Heat Exchangers for Syngas Coolers”, Lewis, E.C., EPRI Rept. No., AP4406, (1986).Google Scholar
  28. (22).
    “Evaluation of Alloys for Fuel Cell Heat Exchangers”, Perkins, R.A. and Vonk, S.J., EPRI Rept. No., EM-1815, (1981).Google Scholar
  29. (23).
    “Materials Behaviour in Coal Gasification Environments”, Grabke, H.J., Norton, J.F. and Casteel, F.G., High Temperature Alloys for Gas Turbine and Other Applications, (1986), Edt. Betz, W. et al. , D. Reidel Publishing Co.Google Scholar
  30. (24).
    “Sulphidation of Coal Gasifier Heat Exchanger Alloys”, Saunders, S.R.J, and Schlierer, S., High Temperature Corrosion in Energy Systems, Edt. Rothman, M.F., A.I.M.E., (1985).Google Scholar
  31. (25).
    “High Temperature Alloy Requirements for Coal Fired Combined Cycles”, Davidson, B.J., Meadowcroft, D.B., Stringer, J., High Temperature Alloys for Gas Turbine and Other Applications, (1986), Edt. Betz, W. et al. , D. Reidel Publishing Co.Google Scholar
  32. 1.
    Assessment of Research Needs for Advanced Fuel Cells, DOE-report DOE/ER/30060-T1, (Nov. 1985)Google Scholar
  33. 2.
    Fuel Cells, Technology Status Reports for 1985 and 1986, report DOE/METC-86/0241 and DOE/METC-87/0257, Morgantown Energy Technology Center, (1986 and 1987)Google Scholar
  34. 3.
    Various fuel cell conferences, seminars and workshops: 10-14 June 1985, Ravello (Italy), (Unesco); 7-8 October 1985, Noordwijkerhout (Holland), (CEC/PEO); 21-22 January 1986, Tokyo, (Institute of Applied Energy); 26-29 October 1986, Tucson (Arizona), (National Fuel Cell Coordinating Group); 4-5 June 1987, Taormina (Italy), (CEC/ENEA/CNR); 26-29 October 1987, The Hague (Holland), (PEO).Google Scholar
  35. 1.
    Gas Turbines for Land Transport, Penny, R.N., Science Journal, 54–59 pp., April (1970)Google Scholar
  36. 2.
    Ceramic Applications in Turbine Engines, Helms, H.E., Heitman, P.W., Lindgren, L.C. and Thrasher, S.R., Noyes Publications, N.J. USA (1986)Google Scholar
  37. 3.
    The Use of Ceramics for Engines, Godfrey, D.J., Proc. of the Twelth Int. Cont. on Science of Ceramics, Saint-Vencent, ItalyGoogle Scholar
  38. 4.
    Ceramic Components in Automative Applications, Kirk, J.N., Metals and Materials, Vol. 3. No. 11, 647–652 pp., November (1987)Google Scholar
  39. 5.
    Modern Ceramic Engineering Properties, Processing and Use in Design, Richerson, D.W., Marcel Dekker Inc., N.Y. (1982)Google Scholar
  40. 6.
    Corrosion Behaviour of Silicon Nitride and Silicon Carbide in Turbine Atmospheres, Singhal, S.C., 1972 Tri-Service Conference on Corrosion MCIC 73-19, 245-250 pp. (1973)Google Scholar
  41. 7.
    Oxidation and Hot Corrosion Behaviour of Si3N4 and Sialon, Schlichting, J., Nitrogen Ceramics, Ed. Riley, F.L., Pub. Noordholdt Leyden, 627–634 pp. (1978)Google Scholar
  42. 8.
    Molten Salt Corrosion of SiC and Si3N4Ceramics, Tressler, R.E., Meiser, M.D. and Yannshonis, J. Am. Ceramic Soc. Vol. 59 No. 5 – 6, 278–279 pp. (1976)CrossRefGoogle Scholar
  43. 9.
    Corrosion of Silicon Carbide in Gases and Alkaline Melts, McKee Out and Chatterji D., J. Am. Ceramic Soc. Vol. 59 No. 5 – 6, 441–444 pp. (1976)CrossRefGoogle Scholar
  44. 10.
    Hot Corrosion of Sintered and SiC at 1000°C, Jacobson, N.S. and Smialek, J.L., J. Am. Ceramic Soc. Vol. 68 No. 8, 432–439 pp. (1985)CrossRefGoogle Scholar
  45. 11.
    Burner Rig Corrosion of SiC at 1000°C, Jacobson, N.S., Stearns, C.A. and Smialek, J.L., Advanced Ceramic Materials 1, (2), 154–161 pp. (1986)Google Scholar
  46. 12.
    Ceramic Heat Exchanger Concepts and Materials Technology, Bliem, C., et al. , Noyes Publications, N.J. (1985)Google Scholar
  47. 13.
    Brittle Materials Design - High Temperature Gas Turbine -Materials Technology, Miller, D.G., et al. , AMMRC CTR - 76 -32, Vol. 4 (1976)Google Scholar
  48. 14.
    Private Communication, Godfrey, D.J.Google Scholar
  49. 15.
    Progress in Nitrogen Ceramics 1983, Riley, F.L., Ed., Martinus Nijhogg Publishers, Boston/The Hague/Dordrecht/ Lancaster, Published in Co-operation with NATO Scientific Affairs Division.Google Scholar
  50. 16.
    Ceramic Materials and Components for Engines, Bunk, W. and Hausner, H., Eds., Proc. of the Second International Symposium, Ltibeck-Travelmiinde, FRG, Verslag Deutsche Keramische Gesellschaft, 1023-1034 pp., April 14-17 (1986)Google Scholar
  51. 17.
    State of the Art Report on Engineering Ceramics as Applied to Reciprocating Engines, McClintock, A.L.M., Kannan, K.R. and Probert, C., Department of Trade and Industry, National Engineering Laboratory, June (1987)Google Scholar
  52. 1.
    Survey of the Technological Requirements for High Temperature Materials R + D, Section 1: Diesel Engines., Ed. Timoney, S.G., EUR7660EN, CEC, JRC, Petten (1983)Google Scholar
  53. 2.
    Ceramics in Severe Environments, Godfrey, D.J. and May, E.R.W., Materials Science Research Vol. 5, Ed. Kregel and Palmow, Plenum Press, NY, 149–162 pp. (1971)Google Scholar
  54. 3.
    Silicon Nitride Ceramics for Engineering Applications, Godfrey, D.J., SAE740236, Trans SAE, 83, 1036–1045 pp. (1974)Google Scholar
  55. 4.
    Ceramics for High Performance Applications III, Godfrey, D.J., et al. , Ed. Lenoe, E.M., et al. , Plenum Press, NY, 81–99 pp. (1983)Google Scholar
  56. 5.
    Metal Matrix Composites - Applications and Prospects, Trumper, R.L., Metals and Materials, 662–667 pp., November (1987)Google Scholar
  57. 6.
    SAE Paper 850523, Kamiya et al. (1985)Google Scholar
  58. 7.
    SAE Paper 840426, Matsuoka (1984)Google Scholar
  59. 8.
    SAE Paper 861407, Sakurai and Matsuoka (1986)Google Scholar
  60. 9.
    Ceram. Trans. J., Kajiwara Brit., 86, 77 (1987)Google Scholar
  61. 10.
    Patent Application, Godfrey, D.J.Google Scholar
  62. 11.
    Ad. Ceramic Materials, Taguchi, M., 2, (4), 754 pp. (1987)Google Scholar
  63. 12.
    State of the Art Report on Engineering Ceramics as Applied to Reciprocating Engines, McClintock, A.L.M., Kannan, K.R. and Probert, C., DTI, NEL, June (1987)Google Scholar
  64. (1).
    Fukuoka, H., “Fine Ceramics for Future Creation’1, Japan Fine Ceramics Association, Annual Report for Overseas Readers (1986), pp. 4–52.”Google Scholar
  65. (2).
    Korf, W., Wervelbed directe reductie EGKS studieberich, (1981).Google Scholar
  66. (3).
    Papst, G., “The KR-Process, a Cheap Basis for Hot Metal Production”, Lecture Metec (1984).Google Scholar
  67. (4).
    Weber, R., Wells, W., Stand des EOF – Stahlherstellungsverfahrends, Stahl und Eisen, 103 (1983), pp. 127–1208.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • B. Meadowcroft
    • 1
  • D. Lloyd
    • 2
  • K. Joon
    • 3
  • S. B. v.d. Molen
    • 3
  • E. H. P. Cordfunke
    • 3
  • F. Negrini
    • 4
  • F. J. Vaes
    • 5
  • S. F. Pugh
    • 6
  • S. Newsam
    • 7
  • J. F. G. Condé
    • 8
  • D. J. Godfrey
    • 9
  • J. T. Van Konijnenburg
    • 10
  • J. Morlet
    • 11
  • O. De Pous
    • 12
  • D. Brun
    • 13
  • Stein Heurtey
    • 13
  1. 1.CERL Materials DivisionUK
  2. 2.British Coal CorporationStoke Orchard, GloucesterUK
  3. 3.Netherlands Energy CentrePettenThe Netherlands
  4. 4.University of BolognaItaly
  5. 5.Dow Chemicals B.V.TerneuzenThe Netherlands
  6. 6.AbingdonUK
  7. 7.Rolls-Royce plcDerbyUK
  8. 8.BroadstoneUK
  9. 9.Admiralty Research EstablishmentHolton HeathUK
  10. 10.Structural Ceramics - HoogovensIjmuidenThe Netherlands
  11. 11.Imphy S.A.ParisFrance
  12. 12.Eniricerche - MonterondoItaly
  13. 13.Evry CedexFrance

Personalised recommendations