Advertisement

Zirconia’88 pp 337-366 | Cite as

The Grain Size Dependence of the Mechanical Properties in TZP Ceramics

  • J. Wang
  • M. Rainforth
  • R. Stevens

Abstract

TZP ceramics, containing 2, 2.5, and 3 mol% Y2O3 have been fabricated to give a grain size range of 0.5 to 2.0 µm and the microstructure and - mechanical properties (fracture toughness and fracture strength) determined. The grain size has been demonstrated to be an important parameter in controlling the mechanical properties and can itself be controlled by the sintering temperature and time. The grain size and the stabilizer addition are related to the size of the transformation zone and the extent to which both these parameters determine the toughening increment is discussed.

Keywords

Fracture Toughness Fracture Strength American Ceramic Society Tetragonal Zirconia Transformation Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Nettleship, Itn. J. High Tech. Ceram., 3 (1987) 1.CrossRefGoogle Scholar
  2. 2.
    K. Tsukuma, and M Shimada, J. Mat. Sci., 20 (1985) 1178.CrossRefGoogle Scholar
  3. 3.
    T. Masaki, J. Amer. Ceram. Soc., 69 (1986) 519.CrossRefGoogle Scholar
  4. 4.
    K. Tsukuma, Y. Kubota and T. Tsukidate, PP.382 inAdvances in Ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle and A.H. Heuer. The American Ceramics Society, Columbus, OH (1984).Google Scholar
  5. 5.
    K. Tsukuma, Y. Kubota and K. Nobugai, Yagyo-Kyokai Shi (J. Jpn. Ceram. Soc.), 92 (1984) 133.Google Scholar
  6. 6.
    F.F. Lange, G.L. Dunlop and B.I. Davis, J. Amer. Ceram. Soc., 69 (1986) 237.CrossRefGoogle Scholar
  7. 7.
    T. Sato and M. Shimada, J. Amer. Ceram. Soc., 68 (1985) 356.CrossRefGoogle Scholar
  8. 8.
    F.F. Lange, J. Mat. Sci., 17 (1982) 240.CrossRefGoogle Scholar
  9. 9.
    K. Haberho and P. Pampuch, Ceram. Int., 9 (1983) 8.CrossRefGoogle Scholar
  10. 10.
    A.G. Evans and R.M. Cannon, Acta Metall., 34 (1986) 761.CrossRefGoogle Scholar
  11. 11.
    R. McMeeking and A.G. Evans, J. Amer. Ceram. Soc., 65 (1982) 242.CrossRefGoogle Scholar
  12. 12.
    F. F. Lange, J. Mat. Sci., 17 (1982) 225.CrossRefGoogle Scholar
  13. 13.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, J. Amer. Ceram. Soc., 68 (1985) C–320.CrossRefGoogle Scholar
  14. 14.
    M. Watanabe, S. Iio and I. Fukuura, PP.291 inAdvances in Ceramics, Vol. 12, Science and Technology of ZrO2 II. Edited by N. Claussen, M. Ruhle and A.H. Heuer. The American Ceramics Society, Columbus, OH (1984).Google Scholar
  15. 15.
    I-W. Chen and Y-H Chiao, Acta Metall., 31 (1983) 10.Google Scholar
  16. 16.
    I-W Chen and Y-H Chiao, Acta Metall., 33 (1985) 1827.CrossRefGoogle Scholar
  17. 17.
    I-W Chen, Y-H Chiao and K. Tsuzaki, Acta Metall., 33 (1985) 1847.CrossRefGoogle Scholar
  18. 18.
    M. Matsui, T. Soma and I. Oda, PP.371 inAdvances in Ceramics, Vol. 12, Science and Technology of ZrO2 II. Edited by N. Claussen, M. Ruhle and A.H. Heuer. The American Ceramics Society, Columbus OH (1984).Google Scholar
  19. 19.
    M. Ruhle, N. Claussen and A. H. Heuer, PP.352 inAdvances in Ceramics, Vol. 12, Science and Technolgy of ZrO2 II. Edited by N. Claussen, M Ruhle and A.H. Heuer. The American Ceramics Society, Columbus OH (1984).Google Scholar
  20. 20.
    R. W. Davidge, “Mechanical Behaviour of Ceramics”, Cambridge Press (1984).Google Scholar
  21. 21.
    A.A. Griffith, Phil. Trans. R. Soc., (London) A221 (1920) 163.Google Scholar
  22. 22.
    M. V. Swain, Acta Metall., 33 (1985) 2083.CrossRefGoogle Scholar
  23. 23.
    T. Masaki and K. Sinjo, Ceram Int., 13 (1987) 109.CrossRefGoogle Scholar
  24. 24.
    R.C. Garvie, R.H.J. Hannink and M.V. Swain, J. Mat. Sci. Lett., 1 (1985) 437.CrossRefGoogle Scholar
  25. 25.
    N. Claussen and M. Ruhle, PP.137 in Advances in Ceramics, vol. 3, Science and Technology of ZrO2. Edited by A.H. Heuer and W. Hobbs. The American Ceramics society, Columbus OH (1981).Google Scholar
  26. 26.
    T. W. Coyle and R.M. Cannon, Amer. Ceram. Soc. Bull., 60 (1981) 3177.Google Scholar
  27. 27.
    D. B. Mmarshall and M.R. James, J. Amer. ceram. Soc., 69 (1986) 215.CrossRefGoogle Scholar
  28. 28.
    I. Nettleship, PhD Thesis, Department of Ceramics, The University of Leeds (1987).Google Scholar
  29. 29.
    M. V. Swain, J. Amer. Ceram. Soc., 68 (1985) C–97.CrossRefGoogle Scholar
  30. 30.
    M. Ruhle, A Strecker, D. Waidelich and B. Kraus, PP.256 inAdvances in Ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle and A.H. Heuer. The American Ceramics Society, Columbus OH (1984).Google Scholar
  31. 31.
    L.H. Schoenlein, M. Ruhle and A.H Heuer, PP.275 in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle and A.H. Heuer. The American Ceramics Society, Columbus OH (1984).Google Scholar
  32. 32.
    H.Y. Lu, H.Y. Lin and S.Y. Chen, Ceram. Int., 13 (1987) 207.CrossRefGoogle Scholar
  33. 33.
    R.C. Garvie, J. Phys Chem., 69 (1965) 1238.CrossRefGoogle Scholar
  34. 34.
    M.V. Swain and N. Claussen, J. Amer. Ceram. Soc., 66 (1983) C–27.CrossRefGoogle Scholar
  35. 35.
    M. Ruhle and A.H. Heuer, PP.14 inAdvances in Ceramics, Vol. 12, Science and Technology of ZrO2 II. Edited by N. Claussen, M. Ruhle and A.H. Heuer. The American Ceramics Society, Columbus OH (1984).Google Scholar
  36. 36.
    A.H. Heuer and M. Ruhle, Acta Metall., 33 (1985) 2101.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • J. Wang
    • 1
  • M. Rainforth
    • 1
  • R. Stevens
    • 1
  1. 1.School of MaterialsUniversity of LeedsUK

Personalised recommendations