Magnetization, Magnetocrystalline Anisotropy, Domain Wall Energies and Thicknesses in R2Fe14B Materials With R = Nd,Gd,Dy and Ho

  • W. D. Corner
  • M. J. Hawton


Measurements of magnetization and magnetocrystalline anisotropy have been made in three compounds (R = Gd,Dy and Ho) over a range of temperatures from 4.2 to 350K. Observations of domain structure have been made on these compounds and also on the corresponding Nd compound. From measurements on the basal plane domain patterns the domain wall energies and thicknesses have been calculated using the measured magnetization and anisotropy. Good agreement is found between values calculated in this way and values calculated using the basic magnetic parameters except in the case of Gd2Fe14B. It is suggested that the model used is inappropriate in this case owing to the weak anisotropy. Changes of domain structure in a Nd15Fe77B8 ingot have been observed around part of the hysteresis cycle. Saturation can be achieved in grains with their c-axis parallel to the applied field at fields low compared to the coercivity. This indicates the importance of the correct processing of material with good intrinsic properties to enhance the coercivity.


Domain Wall Basal Plane Magnetocrystalline Anisotropy Domain Pattern Torque Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abache, C. and Oesterreicher, H. 1985. J. Appl. Phys. 57, 4112.CrossRefGoogle Scholar
  2. Boge, M., Coey, J.M.D., Czjzek, G., Givord, D., Jeandry, C., Li, H.S. and Odden, J.L. 1985. Solid State Commun. 55, 295.CrossRefGoogle Scholar
  3. Bodenberger, R. and Hubert, A.1977. Phys. Stat. Sol. (a) 44, K7.CrossRefGoogle Scholar
  4. Buschow, K.H.J. 1986. Mater. Sci. Rep. 1.Google Scholar
  5. Corner, W.D. and Hawton, M.J.1988. J. Magn. Magn. Mat. 72, 59.CrossRefGoogle Scholar
  6. Durst, K.D. and Kronmuller, H.1986. J. Magn. Magn. Mat. 59, 86.CrossRefGoogle Scholar
  7. Franse, J.J.M., 1987. Presented at CEAM meeting Dublin.Google Scholar
  8. Givord, D., Lienard, A., Tenaud, P. and Viadieu, T. 1987. J. Magn. Magn. Mat. 67, L281.CrossRefGoogle Scholar
  9. Hawton, M.J. and Comer, W.D. 1987. J. Phys. E: Sci. Inst. 20, 406.CrossRefGoogle Scholar
  10. Hawton, M.J. and Corner, W.D. 1988. J. Magn. Magn. Mat. 72, 52.CrossRefGoogle Scholar
  11. Hirosawa, S., Matsuura, Y., Yamamoto, H., Fujimura, S., Sagawa, M. and Yamauchi, H. 1986. J. Appl. Phys. 59, 873.CrossRefGoogle Scholar
  12. Sagawa, M.1985. J. Magn. Soc. Japan, 9, 25.Google Scholar
  13. Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y. and Hiraga, K.1984, IEEE Trans. Magn. MAG- 20, 1584.CrossRefGoogle Scholar
  14. Sinnema, S., Radwanski, R.J., Franse, J.J.M., de Mooij, D.B. and Buschow, K.H.J. 1984. J. Magn. Magn. Mat. 44, 333.CrossRefGoogle Scholar
  15. Trauble, H., Boser, O., Kronmuller, H. and Seeger, A. 1966. Phys. Stat. Sol. 10, 283.Google Scholar
  16. Yamauchi, H., Yamada, M., Yamaguchi, Y. and Yamamoto, H. 1986. J. Magn. Magn. Mat. 54-57, 575.CrossRefGoogle Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • W. D. Corner
    • 1
  • M. J. Hawton
    • 1
  1. 1.Physics DepartmentUniversity of DurhamDurhamEngland

Personalised recommendations