Advertisement

Lignin Characterization of Wheat Straw Samples as Determined by Chemical Degradation Procedures

  • C. Lapierre
  • D. Jouin
  • B. Monties

Summary

Extractive-free wheat straw, and the corresponding samples issued from its alkaline treatment — i.e. saponified wheat straw and alkali-soluble wheat lignin- were submitted to three chemical procedures of lignin characterization: nitrobenzene oxidation, acidolysis and thioacidolysis. The various performances of the three techniques were comparatively evaluated. The thioacidolysis procedure was found to have higher performances with regards to the two following criteria: the prominent alkyl aryl ether lignin structures were the almost exclusive source for the recovered degradation products; these products were obtained with a high yield. These advantages make the thioacidolysis procedure an unambiguous way to characterize grass lignins, even when present in low amounts.

Keywords

Ferulic Acid Wheat Straw Compression Wood Wheat Sample Nitrobenzene Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, H.M. and Allan, G.G. (1971). Oxidation. In: Lignins:Occurrence, Formation, Structure and Reactions,K. V. Sarkanen and C.H. Ludwig (eds) Wiley-Interscience, New York, pp 433–485.Google Scholar
  2. 2.
    Gellerstedt, G.; Lindfors, E.L.; Lapierre, C. and Monties, B. (1984). Structural changes in lignins during kraft cooking. Part 2-Characterization by acidolysis.Svensk Papperstidning 9:R61–R67.Google Scholar
  3. 3.
    Glasser, W.G.; Barnett, C.A. and Sano, Y. (1983). Classification of lignins with different genetic and industrial origins.Applied Polymer Symposium 37:441–460.Google Scholar
  4. 4.
    Hartley, R.D. (1972). p-Coumaric and ferulic acid components of cell walls of ryegrass and their relationships with lignin and digestibility.Journal of the Science of Food and Agriculture 23:1347–1354.CrossRefGoogle Scholar
  5. 5.
    Higuchi, T.; Ito, Y and Kawamura, I. (1967).p-Hydroxyphenylpropane components of grass lignin and the role of tyrosine-ammonia lyase in its formation.Phytochemistry 6:875–881.CrossRefGoogle Scholar
  6. 6.
    Lapierre, C. (1986). Hétérogeneité des lignines de Peuplienmise en evidence systématique. Thése de doctorat d’Etat. Université de Paris-Sud.Google Scholar
  7. 7.
    Lapierre, C.; Rolando, C and Monties, B. (1983). Characterization of poplar lignins acidolysis products: capillary gas-liquid and liquid chromatography of monomelic products.Holzforschung 37:189–198.CrossRefGoogle Scholar
  8. 8.
    Lapierre, C.; Monties, B. and Rolando, C. (1985). Thioacidolysis of lignin: comparison with acidolysis.Journal of Wood Chemistry and Technology 5:277–292.CrossRefGoogle Scholar
  9. 9.
    Lapierre, C., Monties, B. and Rolando, C. (1986a). Preparative thioacidolysis of spruce lignin: isolation and identification of main monomelic products.Holzforschung 40:47–50.CrossRefGoogle Scholar
  10. 10.
    Lapierre, C.; Monties, B. and Rolando, C. (1986b). Thioacidolysis of poplar lignins: identification of monomelic syringyl products and characterization of guaiacyl-syringyl lignin fractions.Holzforschung 40:113–158.CrossRefGoogle Scholar
  11. 11.
    Lapierre, C., Monties, B. and Rolando, C. (1987). Degradation of various lignins and lignin model compounds by thioacidolysis.International Symposium on Wood and Pulping Chemistry, Paris, Proceedings of papers 2:431–435.Google Scholar
  12. 12.
    Lapierre, C. and Rolando, C. (1988). Thioacidolyses of premethylated lignin samples from pine compression and poplar woods.Holzforchung 42:1–4.CrossRefGoogle Scholar
  13. 13.
    Lundquist, K. (1976). Low-molecular weight lignin hydrolysis products.Applied Polymer Symposium 28:1393–1407.Google Scholar
  14. 14.
    Morrison, I.M. (1974). Structural investigations on the lignin-carbohydrate complexes ofLolium perenne. Biochemical Journal 139:197–204.Google Scholar
  15. 15.
    Nimz, H.H.; Robert, D.;Faix,0. and Nemr, M. (1981). Carbon-13NMR spectra of lignins, 8. Structural differences between lignins of hardwood, softwoods, grasses and compression wood.Holzforschung,35:16–26.CrossRefGoogle Scholar
  16. 16.
    Reeves, J.B. (1987). Lignin and fiber compositional changes in forages over a growing season and their effects onin vitrodigestibility.Journal of Dairy Science 70:1583–1594.CrossRefGoogle Scholar
  17. 17.
    Scalbert, A. (1984). Caractérisation des lignines de paille de blé: fractionnement, associations avec les oses et les acides phénoliques. Thése de Docteur-Ingénieur. Institut National Agronomique de Paris-Grignon.Google Scholar
  18. 18.
    Scalbert, A.; Monties, B.; Guittet, E. and Lallemand, J.Y. (1986). Comparison of wheat straw lignin preparations I. Chemical and spectroscopic characterization.Holzforschung 40:117–127.Google Scholar
  19. 19.
    Shimada, M.; Fukuzuka, T. and Higuchi, T. (1971). Ester linkages ofp-coumaric acid in bamboo and grass lignin.TAPPI 54:72–78.Google Scholar
  20. 20.
    Timell, T.E. (1981). Recent progress in the chemistry ultrastructure and formation of compression wood.International Symposium on Wood and Pulping Chemistry, Stockholm, Proceedings of Papers 1:99–147.Google Scholar
  21. 21.
    Van Soest, P.J. (1964). New chemical procedures for evaluating forages.Journal of Animal Science 23:838–845.Google Scholar
  22. 22.
    Wacek. A.V. and Kratzl, K. (1947). Modellversuche zum Ligninproblem.Osterreichische Chemie Zeitschrijf 48:36–40.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussles and Luxembourg 1989

Authors and Affiliations

  • C. Lapierre
    • 1
  • D. Jouin
    • 1
  • B. Monties
    • 1
  1. 1.Laboratoire de Chimie Biologique,INRAINA-Paris-GrignonThiverval GrignonFrance

Personalised recommendations