Advertisement

Microstructural Stability of Fibrous Composites Based on Magnesium-Lithium Alloys

  • M. Warwick
  • R. T. W. Clyne

Abstract

A magnesium alloy containing about 11wt.% lithium is shown to be attractive as a matrix for composite materials. The degradation of carbon, alumina and silicon carbide in this matrix is examined, and the effect of lithium on silicon carbide monofilament and multifilament is examined using a vapour phase impregnation technique. Only silicon carbide whiskers are found to be stable in this matrix, although a barrier layer of yttria is shown to protect silicon carbide monofilament from attack.

Keywords

Silicon Carbide Barrier Layer Boundary Penetration Silicon Carbide Whisker Lithium Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.W. Chou, A. Kelly and A. Okura, Composites, 16 (1985), 187–206CrossRefGoogle Scholar
  2. [2]
    B.A. Mickucki, S.O. Shook, W.E. Mercer and W.G. Green, Conf. Int. Magnesium Association, Los Angeles, (1986)Google Scholar
  3. [3]
    B.J. MacLean and M.S. Misra in “Mechanical Behaviour of Metal-Matrix Composites” (Proc. Symp. 1982, J.E. Hack and M.F. Amateau, eds.), 195–212, Metallurgical Soc. of AIME, Pennsylvania, (1983)Google Scholar
  4. [4]
    J.E. Hack, R.A. Page and G.R. Leverant, Metall. Trans A, 15A (1984), 1389–1396Google Scholar
  5. [5]
    R.A. Page, J.E. Hack, R. Sherman and G.R. Leverant, Metall. Trans A, 15A (1984), 1397–1405Google Scholar
  6. [6]
    J.T. Evans, Acta Met, 34 (1986), 2075–2083CrossRefGoogle Scholar
  7. [7]
    D. Webster, Metall. Trans. A, 13A (1982), 1511–1519Google Scholar
  8. [8]
    R.T. Swann and D.M. Easterling, Composites, 15 (1984), 305–309CrossRefGoogle Scholar
  9. [9]
    J.H. Jackson, P.D. Frost, A.C. Loonam, L.W. Eastwood and C.H. Lorig, Trans. TMS-AIME, 185 (1949), 149–168Google Scholar
  10. [10]
    J.F. Mason, C.M. Warwick, J.A. Charles and T.W. Clyne, “Magnesium-lithium alloys in metal matrix composites—A preliminary report”, submitted to J. Mat. Sci, 1988Google Scholar
  11. [11]
    T.W. Clyne and J.F. Mason, Metall. Trans. A, 18A (1987), 1519–1530Google Scholar
  12. [12]
    C.A. Stanford-Beale and T.W. Clyne, “Extrusion and high temperature deformation of fibre reinforced aluminium”, published in Comp. Sci. and Techn. (special issue on metal matrix composites), (1988)Google Scholar
  13. [13]
    J.D. Birchall, Trans. J. Br. Ceram. Soc., 82 (1983), 143–145Google Scholar
  14. [14]
    G.R. Cappleman, J.F. Watts and T.W. Clyne, J. Mat. Sci., 20 (1985), 2159–2168CrossRefGoogle Scholar
  15. [15]
    G. Simon and A.R. Bunsell, J. Mat. Sci., 19 (1984), 3649–3657CrossRefGoogle Scholar
  16. [16a]
    R. Warren and C.H. Andersson, Composites, 15 (1984), 16–24CrossRefGoogle Scholar
  17. [16b]
    R. Warren and C.H. Andersson, Composites, 15 (1984), 101–111CrossRefGoogle Scholar
  18. [17]
    R.C. Mehan, M.R. Jackson and M.D. McConnell, J. Mat. Sci., 18 (1983), 3195–3205CrossRefGoogle Scholar
  19. [18]
    R.R. Kieschke, R.E. Somekh and T.W. Clyne, “Protection of SiC monofilaments against attack in metal matrix composites by sputter-deposited barrier layers”, in preparationGoogle Scholar
  20. [19]
    “Janaf Thermochemical Tables, 2nd edition”, US Department of Commerce, NSRDS-NBS, 37 (1971)Google Scholar
  21. [20]
    C.E. Wicks and F.E. Block, “Thermodynamic properties of 65 elements-Their oxides, halides, carbides and nitrides”, U.S. Govt. Print. Off., Washington, (1963)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 1989

Authors and Affiliations

  • M. Warwick
    • 1
  • R. T. W. Clyne
    • 1
  1. 1.Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeEngland

Personalised recommendations