Indentation Creep in Zirconia Ceramics Between 290 K and 1073 K

  • J. L. Henshall
  • G. M. Carter
  • R. M. Hooper


The results are reported of a study of the temperature and time response of yttria stabilised cubic zirconia, both in polycrystalline and single crystal form, to Knoop indentations in the ranges 290–1073 K and 10–10 000 s. The single crystal data lie consistently above the polycrystalline results. Indentation creep is observed at all temperatures with the rate of creep increasing at higher temperatures. The results are analysed and discussed in terms of the available models of indentation creep. A transition in deformation mechanism occurs at approximately 650 K for both materials. The activation energies and stress exponents were determined as 36 and 273 kJ/mol, and 40 and 20 for the single crystal, and 109 and 247 kJ/mol, and 53 and 29 for the polycrystalline below and above 600 K, respectively. At the higher temperatures, deformation is pipe diffusion dislocation climb controlled, whilst at the lower temperatures dislocation glide is the rate determining process.


Stress Exponent Indentation Hardness Indentation Creep Zirconia Ceramic Knoop Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parr, N.L., Martin, G.F. and May, E.R.W., Preparation, microstructure and mechanical properties of silicon nitride. In Special Ceramics 1960. ed., P. Popper, Haywood, London, 1960, p. 120.Google Scholar
  2. 2.
    Edington, J.W., Rowcliffe, D.J. and Henshall, J.L., Powder Metallurgical Review 8: The mechanical properties of silicon nitride and silicon carbide. Powder Met. Int., 1975, 2, 82–96 & 136–147.Google Scholar
  3. 3.
    Garvie, R.C., Hannink, R.H and Pascoe, R.T., Ceramic steel?, Nature, 1975, 258, 703–704.CrossRefGoogle Scholar
  4. 4.
    Claussen, N. Strengthening strategies for Zr02 ceramics at high temperatures. Mat. Sci. Eng., 1985, 71, 23–39.CrossRefGoogle Scholar
  5. 5.
    Tabor, D., Indentation Hardness and its measurement: some cautionary comments. In Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, eds., P.J. Blau and B.R. Lawn, American Society for Testing and Materials, Philadelphia, 1986, pp. 129–159.Google Scholar
  6. 6.
    Bishop, R.F., Hill, R. and Mott, N.F., The theory of indentation hardness tests. Proceedings of the Physical Society (U.K.), 1945, 57, 147–159.CrossRefGoogle Scholar
  7. 7.
    Marsh, D.M., Plastic Flow in Glass. Proc. Roy. Soc. (London), 1964, A279, 420–435.Google Scholar
  8. 8.
    Johnson, K.L., The correlation of indentation experiments. J. Mech. Phys. Sol., 1970, 18, 115–126.CrossRefGoogle Scholar
  9. 9.
    Chiang, S.S., Marshall, D.B. and Evans, A.G., The response of solids to elastic plastic indentation. I. stresses and residual stresses. Journal of Applied Physics, 1982, 53, 298–311.CrossRefGoogle Scholar
  10. 10.
    Mulhearn, T.O. and Tabor, D., Creep and Hardness of metals: A physical study. J. Inst. Met., 1960–61, 89, 7–12.Google Scholar
  11. 11.
    Atkins, A.G., Silverio, A. and Tabor, D., Indentation hardness and the creep of solids. J. Inst. Met., 1966, 94, 369–378.Google Scholar
  12. 12.
    Morgan, J.E., Indentation hardness and indentation creep in solids at temperatures below 0.5 T m. Ph.D. Dissertation, University of Exeter, Exeter, U.K., 1976.Google Scholar
  13. 13.
    Sherby, O.D. and Armstrong, P.E., Prediction of activation energies for creep and self diffusion from hot hardness data. Metall. Trans., 1971, 2, 3479–3484.Google Scholar
  14. 14.
    Roebuck, B. and Almond, E.A., Equivalence of indentation and compressive creep tests on a WC/Co hardmetal. J. Mat. Sci. Letters, 1982, 1, 519–522.CrossRefGoogle Scholar
  15. 15.
    Chu, S.N.G. and Li, J.C.M., Impression creep: A new creep test. J. Mat. Sci., 1977, 12, 2200–2208.CrossRefGoogle Scholar
  16. 16.
    Ingel, R.P., Structure-mechanical property relationships for single crystal yttrium oxide stabilised zirconium oxide. Ph.D. Dissertation, Catholic University of America, Washington, D.C., 1982; University Microfilms International (Ann Arbor, MI) Order No. 83–02474.Google Scholar
  17. 17.
    Sato, T., Ohtaki, S. and Endo, T., Transformation of yttria doped tetragonal doped polycrystals by annealing under controlled humidity conditions. J. Amer. Ceram. Soc., 1985, 68, C320-C322.CrossRefGoogle Scholar
  18. Kandil, H.M., Greiner, J.D. and Smith J.F., Single-crystal elastic constants of yttria-stabilised zirconia in the range 20° to 700°C. J. Amer. Ceram. Soc., 1984, 67, 341–346.CrossRefGoogle Scholar
  19. 19.
    Evans, P.S.E., creep in yttria- and scandia-stabilised zirconia. J. Amer. Ceram. Soc., 1970, 53, 365–369.CrossRefGoogle Scholar
  20. 20.
    Seltzer, M.S. and Talty, P.K., High-temperature creep of Y2O3 -stabilised ZrO2. J. Amer. Ceram. Soc., 1975, 58, 124–130.CrossRefGoogle Scholar
  21. 21.
    Rutman, D.S., Maurin, A.F., Toropov, Yu.S., Pliner, S.M., Taksis, G.A., Dauknis, V.I., Kazakyavichus, K.A., Peras, A.Ya., Martinaiten, V.I. and Yakushka, V.I., Study of the creep of constructional zirconia ceramics at high temperatures. Refractories (U.S.A.), 1980, 21, 212–215.CrossRefGoogle Scholar
  22. 22.
    Wakai, F., Sakaguchi, S. and Matsuno, Y., Superplasticity of yttria-stabilised tetragonal Zr02 polycrystals. Advanced Ceramic Materials, 1986, 1, 259–263.Google Scholar
  23. 23.
    Dimos, D. and Kohlstedt, D.L., Diffusional creep and kinetic demixing in yttria-stabilised zirconia. J. Amer. Ceram. Soc., 1987, 70, 531–536.CrossRefGoogle Scholar
  24. 24.
    Fehrenbacher, L.L., Bailey, F.P. and McKinnon, N.A., Compressive creep of yttria rare earth stabilised zirconia storage heater refractories. SAMPE Quarterly, 1971, 2, 48–60.Google Scholar
  25. 25.
    Guillou, M., Carter, G.C., Henshall, J.L. and Hooper, R.M., Anisotropy of hardness and fracture in single crystal calcia and yttria stabilised cubic zirconia. in preparation.Google Scholar
  26. 26.
    Dominguez-Rodriguez, A., Lagerhof, K.P.D. and Heuer, A.H., plastic deformation and solid-solution strengthening of yttria stabilised zirconia. J. Amer. Ceram. Soc., 1986, 69, 281–284.CrossRefGoogle Scholar
  27. 27.
    Subbarao, E.C. and Maiti, H.S., Oxide electrolytes with fluorite structure. In Progress in Solid Electrolytes, eds. T.A. Wheat, A. Ahmad and A.K. Kuriakose, Energy, Mines and Resources, Ottawa, Canada, 1983, pp. 281–312.Google Scholar
  28. 28.
    Oishi, Y., Ando, K. and Sakka, Y., Lattice and grain-boundary diffusion coefficients of cations in stabilised zirconias. In Advances in Ceramics Vol. 7, eds., M.F. Yan and A.H. Heuer, American Ceramics Society, Columbus, OH, 1983, pp. 208–219.Google Scholar
  29. 29.
    Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982, pp. 93–97.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • J. L. Henshall
    • 1
  • G. M. Carter
    • 1
  • R. M. Hooper
    • 1
  1. 1.School of EngineeringUniversity of ExeterExeterUK

Personalised recommendations