Skip to main content

Statistical Mapping and Analysis of Engineering Ceramics Data

  • Chapter
Mechanics of Creep Brittle Materials 1
  • 252 Accesses

Abstract

The authors’ experience aptly leads to a ‘Statistical engineering’ approach to the problem of dispersion of materials’ properties, particularly in small samples. The paper examines methods of obtaining the most appropriate statistical distribution, the best estimate of the distribution’s parameters and the most appropriate goodness-of-fit procedure. The concepts of statistical mapping, using non-dimensional shape factors, are introduced and presented in three formats. Eighteen engineering ceramics data sets, covering brittle, low-temperature strength to less brittle, high-temperature creep properties, are used to illustrate the methods discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GHANDI, C. and ASHBY, M. F. Fracture-mechanism maps for materials which cleave: FCC, BCC and HCP metals and ceramics. Acta. Met., 1979, 27, 1565–1602.

    Article  Google Scholar 

  2. FROST, H. J. and ASHBY, M. F. Deformation-mechanism Maps .The Plasticity and Creep of Metals and Ceramics. Pergamon Press, 1982.

    Google Scholar 

  3. BUNK, W. and HAUSNER, H. Ceramic Materials and components for Engines, Deutsche Keramische Gesellschaft e. V., 1986.

    Google Scholar 

  4. PEARSON, K. Papers of 1894 and 1895. In Early Statistical Papers, ed. Pearson, E. S., Cambridge University Press, 1947.

    Google Scholar 

  5. HAHN, G. J. and SHAPIRO, S. S. Statistical Models in Engineering, John Wiley and Sons Inc., 1975.

    Google Scholar 

  6. SNOWDEN, W. E. Surface flaws and the mechanical behaviour of glass optical fibres, Fracture Mechanics of Ceramics - 3, Plenum Press, 1978, pp 143–159.

    Google Scholar 

  7. HOSKING, J. R. M. The theory of probability weighted moments. IBM Technical Report RC 12210, 1986.

    Google Scholar 

  8. GOVILA, R. K. Uniaxial tensile and flexural stress rupture of hot pressed silicon nitride, J. American Ceramic Society, 1982, 65, 15–20.

    Article  CAS  Google Scholar 

  9. GOVILA, R. K., MANGELS, J. A. and BAER, J. R. Fracture of Yttria-doped sintered reaction bonded silicon nitride, J. American Ceramic Society, 1985, 68, 413–418

    Article  CAS  Google Scholar 

  10. BARATTA, F. I., DRISCOLL, G. W. and KATZ, R. N. The use of fracture mechanics and fractography to define surface finish requirements for silicon nitride. In Ceramics for High Performance Applications, eds J J Burke, A E Gorum and R N Katz, Brook Hill Publishing Company, 1974, pp 445–476.

    Google Scholar 

  11. JONES, R. L. and ROWCLIFFE, D. J. Tensile strength distributions for silicon nitride, American Ceramic Society Bulletin, 1979, 58, 836–844.

    CAS  Google Scholar 

  12. JERYAN, R. A. Use of statistics in ceramic design and evaluation. In Ceramics for High Performance Applications - II, eds J J Burke, E N Lenoe and R N Katz, Brook Hill Publishing Company, 1978, pp 35–51.

    Google Scholar 

  13. SOMA, T., MATSUI, M. and ODA, I. Tensile strength of a sintered silicon nitride. In Non-oxide Technical and Engineering Ceramics, ed. S Hampshire, Elsevier Applied Science, 1986, pp 361–374.

    Google Scholar 

  14. SNEDDEN, J. D. Long-time creep fracture data on Cr Mo V steel and their application to design, High Temperature Technology, 1987, 5, 23–31.

    CAS  Google Scholar 

  15. BARLOW, R. E. and CAMPO, R. Total time on test processes and applications to failure data analysis. In Reliability and Fault Tree Analysis, Siam, Philadelphia, 1975, pp 451–481.

    Google Scholar 

  16. PARKER, I. The ratio procedure for model testing and estimation. In Transformations in Regression, Estimation Testing and Modelling, PhD Thesis, University of St Andrews, 1987.

    Google Scholar 

  17. LAWLESS, J. F. Statistical Models and Methods for Lifetime Data, John Wiley and Sons, 1982.

    Google Scholar 

  18. d’AGOSTINO, R. B. and STEPHENS, M. A. Goodness of Fit Techniques, Marcel Dekker, New York, 1986.

    Google Scholar 

  19. AHMAD, M. I., SINCLAIR, C. D. and SPURR, B. D. Assessment of flood frequency models using empirical distribution function statistics, Water Resources Research, to be published December 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Snedden, J.D., Sinclair, C.D. (1989). Statistical Mapping and Analysis of Engineering Ceramics Data. In: Cocks, A.C.F., Ponter, A.R.S. (eds) Mechanics of Creep Brittle Materials 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1117-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1117-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6994-6

  • Online ISBN: 978-94-009-1117-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics