Advertisement

On the Utilisation of Entrapped Microorganisms in the Industry of Fermented Beverages

  • C. Divies
Part of the Elsevier Applied Food Science Series book series (EAFSS)

Abstract

Most fermented drinks have a vegetable origin. They result mainly from enzymic activities which can come either from the raw material or from microorganisms.

Keywords

Malic Acid Free Cell Alginate Bead Alcoholic Fermentation Tomato Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemuel, B. and Wingard, J. R. (1974). In: Advances in Biochemical Engineering, Vol. 2, A. Fiechter (Ed.) Springer-Verlag, Berlin, pp. 1–54.Google Scholar
  2. 2.
    Chibata, I., ed. (1978). In: Immobilized Enzymes Research and Development, Kodansha, Tokyo, p. 284.Google Scholar
  3. 3.
    Sato, K., Mori, T., Tosa, T., Chibata, I., Furni, M., Yamashita, K. and Sumi, A. (1975). Biotechnol. Bioeng., 17, 1787–1804.CrossRefGoogle Scholar
  4. 4.
    Vieth, W. R., Wang, S. S. and Saini, R. (1973). Biotechnol. Bioeng., 15, 565–9.CrossRefGoogle Scholar
  5. 5.
    Divies, C. (1975). Brevet ANVAR, no 7524509.Google Scholar
  6. 6.
    Divies, C. (1977). Brevet ANVAR, no 770502.Google Scholar
  7. 7.
    Larson, P. O., Ohlson, S. and Mosbach, K. (1976). Nature, 263, 796–7.CrossRefGoogle Scholar
  8. 8.
    Klein, J. and Wagner, F. (1978). First European Congress on Biotechnology, pp. 142–64.Google Scholar
  9. 9.
    Mattiasson, B. (1983). Immobilisation Methods. In: Immobilised Cells and Organelles, Vol. 1, Vol. 2, CRC Press, pp. 3–27.Google Scholar
  10. 10.
    Webb, C, Black, G. M. and Atkinson, B. (1986). In: Process Engineering Aspects of Immobilised Cell Systems, Publ. The Inst. Chem. Eng.Google Scholar
  11. 11.
    Chibata, I., Tosa, T. and Fujimura, M. (1984). Immobilized living microbial cells. In: Annual Reports of Fermentation Processes, Vol. 6, T. Tasao (Ed.) Academic Press, pp. 1–22.Google Scholar
  12. 12.
    Marshall, K. C. (1985). In: Bacterial Adhesion, D. C. Savage and M. Fletcher (Eds), Plenum Press, New York and London, pp. 133–56.Google Scholar
  13. 13.
    Mitchell, R. (1976). In: Microbial Aspects of Dental Caries, Vol. 1, H. M. Stiles, W. J. Loesche and T. C. O’Brien, Inf. Retrivial Inc., Londres, pp. 47–53.Google Scholar
  14. 14.
    Navarro, J. M. (1978). Production d’éthanol par les cellules adsorbées.In: Utilisation Industrielle du Carbone d’Origine Végétale par oie Microbienne, L. Bobichon and G. Durand, (Eds), S. F. M., Paris, pp. 211–217.Google Scholar
  15. 15.
    Ghommidh, C. and Navarro, J. M. (1986). Flocculation-fermentation. In: Bioréacteurs, G. Goma (Ed.), S. F. M., Paris, pp. 89–112.Google Scholar
  16. 16.
    Stewart, G. G. and Rüssel, I. (1986). J. Inst. Brew., 92, 537–58.Google Scholar
  17. 17.
    Hartmeier, W. and Mucke, I. (1982). Basic trials to co-immobilize living yeast cells and glucoamylase for beer wort fermentation. In: Use of Enzymes in Food Technology. P. Dupuy (Ed.), Lavoisier, Paris pp. 519–24.Google Scholar
  18. 18.
    Goma, G. and Durand, G. (1986). Nouvelles conceptions de mise en oeuvre des microorganisms et de bioréacteurs basées sur les cultures à forte densité cellulaire. In: Bioréacteurs, G. Goma (Ed.), S. F. M., Paris, pp. 127–43.Google Scholar
  19. 19.
    Radovitch, J. M. (1985). Enzyme Microb. Technol., 7, 2–10.CrossRefGoogle Scholar
  20. 20.
    Karel, S. F., Libichi, S. B. and Robertson, C. R. (1985). Chemical Engineering Science, 40, 1321–54.CrossRefGoogle Scholar
  21. 21.
    Tosa, K. and Sato, K. (1985). J. Ferment. Technol., 63, 251–8.Google Scholar
  22. 22.
    Gosmann, B. and Rehm, H. J. (1986). App. Microbiol. Biotechnol., 23, 163–7.Google Scholar
  23. 23.
    Siess, M. H. and Divies, C. (1981). European J. Appl. Microbiol Biotechnol., 12, 10–15.CrossRefGoogle Scholar
  24. 24.
    Seki, M. and Furusaki, S. (1985). J. Chem. Eng., Japan, 18, 461–3.CrossRefGoogle Scholar
  25. 25.
    Karkare, S. B., Dean, R. C. and Venkatasubramanian, K. (1985). Biotechnology, 3, 247–51.CrossRefGoogle Scholar
  26. 26.
    Da Fonseca, M. M., Black, G. M. and Webb, C. (1986). In: Process Engineering Aspects of Immobilised Cell Systems, C. Webb, G. M. Black and B. Atkinson (Eds), The Inst. Chem. Eng., Warwickshire, pp. 63–74.Google Scholar
  27. 27.
    Divies, C. and Deschamps, P. (1986). ANVAR, Patent/France no 8610472.Google Scholar
  28. 28.
    Cailigari, J. P., Francotte, C, de Wanuemaeker, B., Debonne, I. and Simon, J. P. (1986). In: Process Engineering Aspects of Immobilised Cell Systems, C. Webb, G. M. Black and B. Atkinson (Eds), The Inst. Chem. Eng., Warwickshire, pp. 264–71.Google Scholar
  29. 29.
    Navarro, J. M. and Durand, G. (1977). European J. Appl. Microbiol., 4, 243–54.CrossRefGoogle Scholar
  30. 30.
    Aiba, S., Shoda, M. and Nagatani, M,. (1968). Biotechnol. Bioeng., 10, 845–64.CrossRefGoogle Scholar
  31. 31.
    Lee, T. H., Ahn, J. C. and Ryu, D. D. Y. (1983). Enzyme Microb. Technol., 5, 41–5.CrossRefGoogle Scholar
  32. 32.
    Ryu, D. D. Y., Kim, H. S. and Taguchi, H. (1984). J. Ferment. Technol., 62, 255–61.Google Scholar
  33. 33.
    Casey, G. P. (1986). Crit. Rev. In Microbiol., 13, 219–80.CrossRefGoogle Scholar
  34. 34.
    Hahn-Hagerdal, B. (1986). Enzyme Microb. Technol., 8, 322–7.CrossRefGoogle Scholar
  35. 35.
    Doran, P. and Bailey, J. E. (1986). Biotechnol. Bioeng., 28, 73–87.CrossRefGoogle Scholar
  36. 36.
    Cavin, J. F., Prévost, H., Charlet, B. and Divies, C. (1986). Fonctionnement et équipment plasmidique de Streptococcus lactis subsp. diacetylactis en fermentation continue sous forme libre et incluse dans un gel d’alginate. Abstracts: 1er Congrès Société Française de Microbiologie, Toulouse, p. 171.Google Scholar
  37. 37.
    De Taxis Du Poet, P., Dhulster, P., Barbotin, J. N., and Thomas, D. (1986). J. Bacteriol, 165, 871–7.Google Scholar
  38. 38.
    Divies, C. and Cavin, J. F. (1986). In: Microorganismes et Aliments. Evolution, Maitrise, Destructîon des Flores, 6, VI, pp. 43–55.Google Scholar
  39. 39.
    Gestrelius, S. (1982). Enzyme Eng., 6, 245–50.Google Scholar
  40. 40.
    Cuenat, P. and Villetaz, J. C. (1984). Rev. Suisse Vitic. Arboric. Hortic., 16, 145–51.Google Scholar
  41. 41.
    Cavin, J. F. Gauvrit, I. and Diviès, C. (1987). Fermentation malolactique et production de levains en continu par les cellules de Leuconostoc oenos immobilisées. Abstracts: 12 ème colloque Société Française de Microbiologie, Lille, p. 288.Google Scholar
  42. 42.
    Bidan, P., Divies, C. and Dupuy, P. (1978). ANVAR, Patent/France no 7822131.Google Scholar
  43. 43.
    Lenzi, P. and Cavin, J. F. (1985). (Ed) ANVAR, Patent/France no 8506147.Google Scholar
  44. 44.
    White, F. H. and Portno, A. D. (1978). J. Inst. Brewing, 84, 228–30.Google Scholar
  45. 45.
    Ryter, D. S. and Masschelein, C. A. (1985). ASBC Journal, 43, 66–75.Google Scholar
  46. 46.
    Onaka, T., Inoue, T. and Kubo, S. (1985). Biotechnology, 3, 467–70.CrossRefGoogle Scholar
  47. 47.
    Prévost, H., Divies, C. and Rousseau, E. (1985). Biotechnol. Letters, 7, 247.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers LTD 1989

Authors and Affiliations

  • C. Divies
    • 1
  1. 1.Microbiology Laboratory, ENSBANAUniversity of BourgogneDijonFrance

Personalised recommendations