A Proposal for Correct Nomenclature of the Domesticated Species of the Genus Saccharomyces

  • A. Vaughan Martini
  • A. Martini
Part of the Elsevier Applied Food Science Series book series (EAFSS)


The ability to produce ethanol by fermentation of simple sugars is almost completely restricted to yeasts. Although many species are known to carry out this transformation, only a few are able to yield significant amounts of ethyl alcohol during the natural fermentation of the juices of various sugary fruits. Only a handful of these, are commercially exploitable as actual or potential selected starters.


Alcoholic Beverage Yeast Species Taxonomic Study Alcoholic Fermentation Wine Yeast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yarrow, D. (1984). Saccharomyces Meyen ex Reess. In: The Yeasts: A taxonomic study, N. J. W. Kreger-van Rij. (Ed.), Amsterdam; Elsevier Science Publishers, B.V., pp. 379–95.Google Scholar
  2. 2.
    Kunkee, R. E. and Goswell, R. W. (1977). Table wines. In: Alcoholic Beverages, A. H. Rose (Ed.), Academic Press, London, pp. 315–86.Google Scholar
  3. 3.
    Phaff, H. J., Miller, M. W. and Mrak, E. M. (1978). The Life of Yeasts, Harvard University Press, Cambridge, MA.Google Scholar
  4. 4.
    Walt, J. P. van der. (1970). The genus Saccharomyces (Meyen) Reess. In: The Yeasts, a taxonomic study, J. Lodder (Ed.), North-Holland Publisher, Amsterdam, pp. 555–718.Google Scholar
  5. 5.
    Pasteur, L. (1872). Nouvelles expériences pour demontrer que le germe de la levure qui fait le vin provient de l’extérieur des grains de raisin. C.R. Ac. Sci. Paris, 75, 781.Google Scholar
  6. 6.
    Hansen, E. C. (1888). Recherches sur la physiologie et la morphologie des ferments alcooliques. VII. Action des ferments alcooliques sur les diverses espèces de sucre. C.R. Trav. Lab. Carlsberg, 2, 143–67.Google Scholar
  7. 7.
    Kloecker, A. (1915). Chronologische Zusammenstellung der Arbeiten über Saccharomyces apiculatus van 1870 bis 1912. Centr. Bakt., 43, 369–419.Google Scholar
  8. 8.
    Martini, A., Federici, F. and Rosini, G. (1980). A new approach to the study of yeast ecology of natural substrates. Can. J. Microbiol., 26, 856–9.CrossRefGoogle Scholar
  9. 9.
    Rosini, G., Federici, F. and Martini, A. (1982). Yeast flora of grape berries during ripening. Microb. Ecol., 8, 83–9.CrossRefGoogle Scholar
  10. 10.
    Peynaud, E. and Domercq, S. (1959). A review on microbiological problems in wine-making in France. Amer. J. Vitic. Enol., 10, 69–77.Google Scholar
  11. 11.
    Rosini, G. (1984). Assessment of dominance of added yeast in wine fermentation and origin of Saccharomyces cerevisiae in wine-making. J. Gen. Appl. Microbiol., 30, 249–56.CrossRefGoogle Scholar
  12. 12.
    Johnston, J. R. and Mortimer, R. K. (1986). Electrophoretic karyotyping of laboratory and commercial strains of Saccharomyces and other yeasts. Int. J. Syst. Bacteriol., 36, 569–72.CrossRefGoogle Scholar
  13. 13.
    Guilliermond, A. (1913). Nouvelles observations sur la sexualité des levures. Arch. Protistenk., 28, 52–77.Google Scholar
  14. 14.
    Stelling-Dekker, N. M. (1931). Die sporogenen Hefen. Verh. Kon. Ned. Akad. Wet., Afd. Natuurk., Sect. II, 28, 1–547.Google Scholar
  15. 15.
    Lodder, J. (1934). Die anaskosporogenen Hefen. I. Hälfte. Verh. Kon. Ned. Akad. Wet., Afd. Natuurk., Sect. II, 32: 1–256.Google Scholar
  16. 16.
    Diddens, H. A. and Lodder, J. (1942). Die anaskosporogenen Hefen. II. Hälfte, North-Holland Publ. Co., Amsterdam.Google Scholar
  17. 17.
    Lodder, J. and Kreger-van Rij, N. J. W. (1952). The Yeasts, a taxonomic study, North-Holland Publ. Co., Amsterdam.Google Scholar
  18. 18.
    Lodder, J. (Ed.) (1970). The Yeasts, a taxonomic study, North-Holland Publ. Co., Amsterdam.Google Scholar
  19. 19.
    Kreger van-Rij, N. J. W. (Ed.) (1984). The Yeasts: a taxonomic study, Elsevier Science Publishers, B.V., Amsterdam.Google Scholar
  20. 20.
    Kurtzman, C. P., Smiley, M. J. and Barker, F. L. (1975). Scanning electron microscopy of ascospores of Debaryomyces and Saccharomyces. Mycopathol. Mycol. Appl., 55, 29–34.Google Scholar
  21. 21.
    Tsuchiya, Y., Fukuzawa, Y., Taguchi, M., Nakase, T. and Shinoda, T. (1974). Serological aspects of yeast classification. Mycopathol. Mycol. Appl., 53, 77–91.CrossRefGoogle Scholar
  22. 22.
    Gorin, P. A. J. and Spencer, J. F. T. (1970). Proton magnetic resonance spectroscopy—An aid in identification and chemotaxonomy of yeasts. Adv. Appl. Microbiol., 13, 25–87.CrossRefGoogle Scholar
  23. 23.
    Yamada, Y. and Kondo, K. (1972). Taxonomic significance of the coenzyme Q system in yeasts and yeast-like fungi (2). In: Fermentation Technology Today Pro. IVth Int. Ferment. Symp., Soc. Ferment. Technol., G. Terui (Ed.), Osaka, Japan, pp. 781–4.Google Scholar
  24. 24.
    Bos, P. and De Bruyn, J. C. (1973). The significance of hydrocarbon assimilation in yeast identification. Antonie van Leeuwenhoek, 39, 99–107.CrossRefGoogle Scholar
  25. 25.
    Campbell, J. (1973). Computer identification of yeasts of the genus Saccharomyces. J. Gen. Microbiol., 11, 127–35.Google Scholar
  26. 26.
    Barnett, J. A., Payne, R. W. and Yarrow, D. (1983). Saccharomyces cerevisiae Meyen ex Hansen. In: Yeasts: Characteristics and Identification, Cambridge University Press, p. 467.Google Scholar
  27. 27.
    Price, C. W., Fuson, G. B. and Phaff, H. J. (1978). Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia. Microbiol. Rev., 42, 161–93.Google Scholar
  28. 28.
    Kurtzman, C. P., Phaff, H. J. and Meyer, S. A. (1983). Nucleic acid relatedness among yeasts. In: Yeast GeneticsFundamental and Applied Aspects, J. F. T. Spencer, D. M. Spencer and A. R. W. Smith (Eds.), Springer-Verlag, New York, pp. 139–66.CrossRefGoogle Scholar
  29. 29.
    Scheda, R. and Yarrow, D. (1966). The instability of physiological properties used as criteria in the taxonomy of yeasts. Arch. Mikrobiol., 55, 209–25.CrossRefGoogle Scholar
  30. 30.
    Scheda, R. and Yarrow, D. (1968). Variations in the fermentative pattern of some Saccharomyces species. Arch. Microbiol., 61, 310–16.CrossRefGoogle Scholar
  31. 31.
    Rosini, G., Federici, F., Vaughan, A. E. and Martini, A. (1982). Systematics of species of the yeast genus Saccharomyces associated with the fermentation industry. European J. Appl. Microbiol. Biotechnol., 15, 188–93.CrossRefGoogle Scholar
  32. 32.
    Kurtzman, C. P., Smiley, M. J. and Johnson, C. J. (1980). Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol., 30, 503–13.CrossRefGoogle Scholar
  33. 33.
    Starmer, W. T., Phaff, H. J., Miranda, M. and Miller, M. W. (1978). Pichia amethionina, a new heterothallic yeast associated with the decaying stems of cereoid cacti. Int. J. Yst. Bacteriol. 28, 433–41.CrossRefGoogle Scholar
  34. 34.
    Martini, A. and Phaff, H. J. (1973). The optical determination of DNA—DNA homologies in yeasts. Ann. Microbiol., 23, 59–68.Google Scholar
  35. 35.
    Yarrow, D. and Nakase, T. (1975). DNA base composition of species of the genus Saccharomyces. Antonie van Leeuwenkoek, 41, 81–8.CrossRefGoogle Scholar
  36. 36.
    Vaughan Martini, A. and Kurtzman, C. P. (1985). Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int. J. Syst. Bacteriol., 35, 508–11.CrossRefGoogle Scholar
  37. 37.
    Vaughan Martini, A. E. and Martini, A. (1987). Three newly delimited species of Saccharomyces sensu strictu. Antonie van Leeuwenhoek, 52, 77–84.CrossRefGoogle Scholar
  38. 38.
    Guilliermond, A. (1912). Les Levures, Octave Doin et Fils, Paris.Google Scholar
  39. 39.
    Carlson, M. (1987). Regulation of sugar utilization in Saccharomyces species. J. Bacteriol., 169, 4873–7.Google Scholar
  40. 40.
    Yamazaki, M., Goto, S. and Komagata, K. (1983). An electrophoretic comparison of the enzymes of Saccharomyces yeasts. J. Gen. Appl. Microbiol., 29, 305–18.CrossRefGoogle Scholar
  41. 41.
    Bicknell, J. N. and Douglas, H. C. (1970). Nucleic acid homologies among species of Saccharomyces. J. Bacteriol. 101, 505–12.Google Scholar
  42. 42.
    Holmberg, S. (1982). Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae. II. Restriction endonuclease analysis of genes of chromosome III. Carlsberg Res. Commun., 47, 233–44.CrossRefGoogle Scholar
  43. 43.
    Nilsson-Tillgren, T., Gjermansen, T. C., Holmberg, S. and Petersen, J. G. L. (1986). Analysis of chromosome V and the ILV 1 gene from Saccharomyces carlsbergensis. Carlsberg Res. Commun., 51, 309–26.CrossRefGoogle Scholar
  44. 44.
    Naumov, G. I. (1987). Genetic basis for classification and identification of the ascomycetous yeast. In: The Expanding Realm of Yeast-like Fungi. Proc. Int. Symp. Perspectives of Taxonomy, Ecology ad Phylogeny of Yeast and Yeast-like Fungi, G. S. de Hoog, M. Th. Smith, A. C. M. Weijman. (Eds), Amsterdam, Elsevier Science Publishers, pp. 469–75.Google Scholar
  45. 45.
    Banno, I. and Kaneko, J. (1988). Genetic analysis of taxonomic relation between S. cerevisiae and S. bayanus. 7th Int. Symp. Yeasts, 1–5 August, Perugia, Italy.Google Scholar
  46. 46.
    Hawthorne, D. C. (1988). Recombination and speciation within the genus Saccharomyces. 7th Int. Symp. Yeasts, 1–5 August, Perugia, Italy.Google Scholar
  47. 47.
    Batschinskaya, A. A. (1914). Entwicklungsgeschichte und Kultur des neue Hefepilzes Saccharomyces paradoxus. J. Microbiol. Epidemiol. Immunobiol., 1, 231–47.Google Scholar

Copyright information

© Elsevier Science Publishers LTD 1989

Authors and Affiliations

  • A. Vaughan Martini
    • 1
  • A. Martini
    • 1
  1. 1.Department of Plant BiologyUniversity of PerugiaPerugiaItaly

Personalised recommendations