Advertisement

β-Carotene (Provitamin A) Production with Algae

  • L. J. Borowitzka
  • M. A. Borowitzka
Part of the Elsevier Applied Biotechnology Series book series (APBISE)

Abstract

Dunaliella is a unicellular, biflagellate, naked green alga (Chlorophyceae, Dunaliellales), and the type species of this genus, Dunaliella salina (Dunal) Teodoresco is often found in natural hypersaline waters where it colours the brines red (Teodoresco, 1905). This algal species was first recognised as containing high intracellular concentrations of β-carotene by Mil’ko (1963) and Aasen et al (1969). Initial research on the potential of using this alga as a commercial source of β-carotene began in the Ukraine in the 1960s (cf. Massyuk, 1966; Massyuk & Abdula, 1969) and it was later also proposed as a commercial source of glycerol (Ben-Amotz, 1980; Chen & Chi, 1981; Ben-Amotz & Avron, 1982).

Keywords

Dunaliella Salina High Intracellular Concentration Tubular Photobioreactors Algal Biotechnology Salina Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasen, A. J., Eimhjellen, K. E. & Liaaen-Jensen, S. (1969). An extreme source of β-carotene, Acta Chim. Scand., 23, 2544–5.CrossRefGoogle Scholar
  2. Avron, M., Ben-Amotz, A. & Edelstein, S.(1987). Feed supplement. UK patent application 2 189 675A. Google Scholar
  3. Bauernfeind, J. C. (ed.) (1981). Carotenoids as Colourants and Vitamin A Precursors. Academic Press, New York, pp. 938.Google Scholar
  4. Ben-Amotz, A. (1980). Glycerol production in the alga Dunaliella. In Biochemical and Photosynthetic Aspects of Energy Production, ed. A. San Pietro. Academic Press, New York, pp. 191–208.Google Scholar
  5. Ben-Amotz, A. & Avron, M. (1982). The potential use of Dunaliella for the production of glycerol, β-carotene and high protein feed. In Biosaline Research: A Look to the Future, ed. A. San Pietro. Plenum Publishing Corporation, New York, pp. 207–14.Google Scholar
  6. Ben-Amotz, A. & Avron, M.(1983). On the factors which determine the massive β-carotene accumulation in the halotolerant alga Dunaliella salina. Plant Physiol.,72, 593–7. CrossRefGoogle Scholar
  7. Ben-Amotz, A., Katz, A. & Avron, M. (1982). Accumulation of β-carotene inhalotolerant algae: purification and characterisation of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol., 18, 529–37.CrossRefGoogle Scholar
  8. Ben-Amotz, A., Edelstein, S. & Avron, M. (1986). Use of the β-carotene rich alga Dunaliella bardawil as a source of retinol. Br. Poult. Sci., 27, 613–9.CrossRefGoogle Scholar
  9. Bloch, M. R., Sasson, J., Ginzburg, M. E., Goldman, Z., Ginzburg, B. Z., Garti, N. & Perath, A. (1982). Oil products from algae. US patent no. 4.341 038.Google Scholar
  10. Borowitzka, L. J. (1981). The microflora. Adaptions to life in extremely saline lakes. Hydrobiologia, 81, 33–46.Google Scholar
  11. Borowitzka, M. A.(1988). Algal growth media and sources of algal cultures. In Micro-algal Biotechnology, ed. M. A. Borowitzka & L. J. Borowitzka, Cambridge University Press, Cambridge pp. 456–65.Google Scholar
  12. Borowitzka,L. J., Borowitzka, M. A. & Moulton, T. P.(1984). The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant. Hydrobiologia, 116/117, 115–21.CrossRefGoogle Scholar
  13. Borowitzka, L. J., Moulton, T. P. & Borowitzka, M. A. (1986). Salinity and the commercial production of beta-carotene from Dunaliella salina. Nova Hedwigia, Beih., 83, 224–9.Google Scholar
  14. Borowitzka, M. A. & Borowitzka, L. J. (1988a) Dunaliella. In Microalgal Biotechnology, ed. M. A. Borowitzka & L. J. Borowitzka. Cambridge University Press, Cambridge, pp. 27–58.Google Scholar
  15. Borowitzka, M. A. & Borowitzka, L. J.(1988b) Limits to growth and carotenogenesis in laboratory and large-scale cultures of Dunaliella salina. In Algal Biotechnology, ed. T. Stadler, J. Mollion, M-C. Verdus, Y. Karamanos, H. Morvan & D. Christiaen. Elsevier Applied Science Publishers, Barking, pp. 371–82.Google Scholar
  16. Chen, B. J. & Chi, C. H. (1981). Process development and evaluation for algal glycerol production. Biotech. Bioeng., 23, 1267–87.CrossRefGoogle Scholar
  17. Craig,R., Reichelt, B. Y. & Reichelt, J. L.(1988).Genetic engineering of micro-algae. In Micro-algal Biotechnology, ed. M.A. Borowitzka & L. J. Borowitzka. Cambridge University Press, Cambridge, pp. 415–55.Google Scholar
  18. Curtain, C. C. & Snook, H. (1983). Method for harvesting algae. US patent no. 511 135.Google Scholar
  19. Curtain, C. C., West, S. M. & Schlipalius, L. (1987). Manufacture of β-carotene from the salt lake alga Dunaliella salina; the scientific and technical background. Aust. J. Biotechnol., 1, 51–7.Google Scholar
  20. Drokova, I. G. & Dovhorouka, S. I.(1966). Carotene-formation in Dunaliella salina Teod. under the effect of some carbon sources. Ukransk. Bot. Zhour., 21, 59–62.Google Scholar
  21. Federov, V. D., Maksimov, V. N. & Kromov, V. M. (1968). Effect of light and temperature on primary production of certain unicellular green algae and diatoms. Fiziol. Rast., 15, 640–51.Google Scholar
  22. Gibor, A. (1956). The culture of brine algae. Biol, bull., Woods Hole, 3, 223–9.CrossRefGoogle Scholar
  23. Grant, B. R. (1968). The effect of carbon dioxide concentration and buffer system onnitrate and nitrite and assimilation by Dunaliella tertiolecta, J. Gen. Micro., 54, 327–36.Google Scholar
  24. Kessler, J. O. (1982). Algal cell harvesting. US patent no. 4 324 067.Google Scholar
  25. Kessler, J. O. (1985). Hydrodynamic focusing of motile algal cells. Nature, 313, 208–10.CrossRefGoogle Scholar
  26. Kläui,H (1981).Industrial and commercial uses of carotenoids. In Carotenoid chemistry and Biochemistry, ed. G. Britton & T. W. Goodwin. Pergamon Press, Oxford, pp. 309–28.Google Scholar
  27. Klausner, A. (1986). Algaculture: Food for thought. Biotechnology, 4, 947–53.CrossRefGoogle Scholar
  28. Lerche, W. (1937). Untersuchungen über die Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch, für Protistenk., 88, 236–9.Google Scholar
  29. Loeblich, L. A. (1972). Studies on the brine flagellate Dunaliella salina. PhD thesis, University of California, San Diego.Google Scholar
  30. MacKinney, G. & Chichester, C. O.(1960).Biosynthesis of carotenoids. In Comparative Biochemistry of Photoreactive Systems, ed. M. B. Allen. Academic Press, New York, pp. 205–15.Google Scholar
  31. Massyuk, N. P. (1965). Carbonate and bicarbonate as stimulators of growth and carotene accumulation in Dunaliella salina Teod. Ukransk. Bot. Zhour., 22, 18–22.Google Scholar
  32. Massyuk, N. P. (1966). Mass culture of the carotene-bearing alga Dunaliella salina Teod. Ukransk. Bot. Zhour., 23, 12–19.Google Scholar
  33. Massyuk, N. P. & Abdula, E. G. (1969). First experiment of growing carotene-containing algae under semi-industrial conditions. Ukransk. Bot. Zhour., 26, 21–7.Google Scholar
  34. Mathews-Roth, M. M.(1982).Medical applications and uses of carotenoids. In Carotenoid Chemistry and Biochemistry, ed. G. Britton & T. W. Goodwin. Pergamon Press, Oxford, pp. 297–307Google Scholar
  35. Mayer,H.& Isler, O. (1971). Total syntheses. In Carotenoids, ed. O. Isler. Birkhauser, Basle, pp. 328–575.Google Scholar
  36. Mil’ko, E. S. (1962). Study the requirement of two Dunaliella spp. in mineral and organic components if the medium, Moscow University Vestnik.Biologya,6, 21–3.Google Scholar
  37. Mil’ko, E. S. (1963). Effect of various environmental factors on pigment production in the alga Dunaliella salina. Mikrobiologiya, 32, 299–307.Google Scholar
  38. Mironyuk, V. I. & Einor, L. O.(1968). Oxygen exchange and pigment content in various forms of Dunaliella salina Teod. under conditions of increasing NaCl content. Gidrobiol Zhournal, 4, 23–9.Google Scholar
  39. Mohn, F. H. (1988). Harvesting of micro-algal biomass. In Micro-algal Biotechnology, ed. M. A. Borowitzka & L. J. Borowitzka. Cambridge University Press, pp. 395–414.Google Scholar
  40. Moulton, T. P., Borowitzka, L. J. & Vincent, D. J. (1987a) the mass culture of Dunaliella salina for β-carotene: from pilot plant to production plant, Hydrobiologia, 151/152, 99–105.CrossRefGoogle Scholar
  41. Moulton, T. P., Sommer, T. R., Burford, M. A. & Borowitzka, L. J. (1987b). Competition between Dunaliella species at high salinity. Hydrobiologia, 151/152, 107–16.CrossRefGoogle Scholar
  42. Nelis, H. J. C. F. & De Leenheer, A. P. (1983). Isocratic nonaqueous reversed-phase liquid chromatography of carotenoids. Analyt. Chem., 55, 270–75.CrossRefGoogle Scholar
  43. Nonomura, A. M. (1987). Process for producing a naturally derived carotene-oil composition by direct extraction from algae. US patent no. 4,680,314.Google Scholar
  44. Potts, W. T. (1987). Extraction of carotenoid pigments from algae. Australian patent application no. 69260/87. Rich, V. (1978). Israel’s place in the sun. Nature, 275, 581-2.Google Scholar
  45. Rich, V.(1978). Israel’s place in the sun. Nature, 275, 581–2.CrossRefGoogle Scholar
  46. Ruane, M. (1974a). Recovery of algae from brine suspensions. Australian patent no. 486 999.Google Scholar
  47. Ruane, M. (1974b). Extraction of caroteiniferous materials from algae. Australian patent no. 487 018.Google Scholar
  48. Sammy, N. (1987). Method for harvesting algae. Australian patent application no. 70924/87.Google Scholar
  49. Schwartz, J., Suda, D. & Light, G. (1986). Beta-carotene is associated with the regression of hamster buccal puch carcinoma and induction of tumor necrosis factor in macrophages. Biochem. biophys. Res. Commun., 136, 1130–5.CrossRefGoogle Scholar
  50. Semenko, V. E. & Abdullayev, A. A. (1980). Parametric control of ß-carotene biosynthesis in Dunaliella salina cells under conditions of intensive cultivation. Fiziol. Rast., 27, 31–41.Google Scholar
  51. Siegel, B. Z., Siegel, S. M., Speitel, T., Waber, J. & Stoeker, R. (1984). Brine organisms and the question of habitat-specific adaption. Origins of Life, 14, 757–70.CrossRefGoogle Scholar
  52. Spencer, J. F. T. & Spencer, D. M. (1983). Genetic improvements of industrial yeasts. Ann. Rev. Microbiol., 37, 121–42.CrossRefGoogle Scholar
  53. Teodoresco, E. C.1905). Organisation et developpement du Dunaliella nouveau genre de Volvocacee-Polyblepharidee. Bot. Zentralblatt, Beih., 18, 215–32.Google Scholar
  54. Wegmann, K., Ben-Amotz, A. & Avron, M. (1980). Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas. Plant. Physiol., 66, 1196–7.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • L. J. Borowitzka
    • 1
  • M. A. Borowitzka
    • 2
  1. 1.Western Biotechnology LtdBayswaterAustralia
  2. 2.Algal Biotechnology Laboratory, School of Biological and Environmental SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations