Advertisement

Microbial Reactions for the Synthesis of Vitamin C (l-Ascorbic Acid)

  • V. Delić
  • D. Šunić
  • D. Vlašić
Part of the Elsevier Applied Biotechnology Series book series (APBISE)

Abstract

Microbial conversion of several chemical substances deserves special attention, mainly due to its economical and ecological advantages as compared to conventional chemical routes. Industrial production of vitamin C is an example of sophisticated chemical manufacturing involving highly complex and expensive chemical and microbial technology. In this process only one step is mediated by micro-organisms. This review is to provide a complete discussion of results, methods and current ideas of l-ascorbic acid (vitamin C) biosynthesis by micro-organisms, particularly since this field has only rudimentally been covered in the literature (Razumovskaya, 1962; Kulhanek, 1970; Crawford & Crawford, 1980).

Keywords

Microbial Production European Patent Acetic Acid Bacterium Japan Patent Hexuronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba, S., Humprey, A. E. & Milles, N. F. (1973). Biochemical Engineering. Academic Press, New York and London.Google Scholar
  2. Alieva, R. M. (1966). Formation of 2-keto-L-gulonic acid by resting cells of Pseudomonas fluorescens. Tr. Petergofsk. Biol. Inst., Leningr. Gos. Univ., 19, 100–103.Google Scholar
  3. Anderson, S., Marks, C. B., Lazarus, R., Miller, J., Stafford, K., Seymour, J., Light, D., Rastetter, W. & Estell, D. (1985). Production of 2-keto-L-gulonate an intermediate in L-ascorbate synthesis, by a genetically modified Erwinia herbicola. Science, 230, 144–9.CrossRefGoogle Scholar
  4. Bagdasarian, M. & Timmis, K. N. (1982). Host: vector systems for gene cloning in Pseudomonas. In Current Topics in Microbiology and Immunology, Vol. 96, ed. P. H. Hof Schneider & W. Goebel. Springer, Berlin, Heidelberg, New York, pp. 47–67.Google Scholar
  5. Bailey, K. M., Venkatasubramanian, K. & Karkare, S. B. (1985). Immobilized live cell reactor dynamics following dilution rate shift to growth conditions: cell synchrony effects. Biotechnol. Bioeng., 27, 1208–13.CrossRefGoogle Scholar
  6. Bergey’s Manual of Systematic Bacteriology (1984). Vol. 1, ed. N. R. Krieg & J. G. Holt. The Williams & Wilkins Co., Baltimore.Google Scholar
  7. Bernhauer, K. & Knobloch, H. (1938). Decomposition of glucose by Acetobacter suboxydans. Naturwissenschaften, 26, 819.CrossRefGoogle Scholar
  8. Bernhauer, K. & Knobloch, H. (1940). Oxidations with acetic acid bacteria. VI Comparative study on the formation of reducing-sugar carboxylic acids and the preparation of 2-keto-gluconic acid. Biochem. Z., 303, 308–15. Google Scholar
  9. Bertrand, G. (1896). Préparation biochimique du sorbose. CR. Hebd. Séanc. Acad. Sci. Paris, 122, 900–3. Google Scholar
  10. Billman, J. H., Sojka, S. A. & Taylor, P. R. (1972). Investigations of keto-enol tautomerism by carbon-13 nuclear magnetic resonance spectroscopy. J. Chem. Soc., Perkin Trans., 2, pp. 2034–5.Google Scholar
  11. Brodelius, P. & Vandamme, E. J. (1987). Immobilized cell systems. In Biotechnology, Vol. 7A (Enzyme Technology), 8, ed. J. F. Kennedy. VCH, Weinheim, pp. 405–64.Google Scholar
  12. Burns, J. J.(1967). Ascorbic acid. In Metabolic Pathways, Vol. 1, ed. D. M. Greenberg. Academic Press, New York, pp. 394–411. Google Scholar
  13. Chas. Pfizer & Co. (1958). 2-Oxo-L-gulonic acid. British Patent No. 800 634.Google Scholar
  14. Crawford, T. C. & Crawford, S. A. (1980). Synthesis of L-ascorbic acid. Adv. Carbohydr. Chem. Biochem., 37, 79–155.CrossRefGoogle Scholar
  15. De Boer, H. A., Comstock, L. J. & Vasser, M. (1983). The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sei. U.S.A., 80, 21–5.CrossRefGoogle Scholar
  16. Estell, D. A., Light, D. R., Rastetter, W. H., Lazarus, R. A. & Miller, J. V. (1985). Biosynthetic 2,5-diketogluconic acid reductase recombinant cells and expression vectors for its production, and its use in preparing 2-keto-L-gulonic acid. European Patent No. 132 308.Google Scholar
  17. Frank, B. H. & Chance, R. E. (1983). Two routes for producing human insulin utilizing recombinant DNA technology. Müch. med. Wschr., 125 (Suppl. 1), 14–20.Google Scholar
  18. Fujisawa, T., Yamazaki, M., Nishiyama, K., Shimizu, K. & Sawai, H. (1963a). 2-Ketogulonic acid. Japan Patent No. 63 7725.Google Scholar
  19. Fujisawa, T., Yamazaki, M., Nishiyama, K., Shimizu, K. & Sawai, H. (1963b). Purification of 2-ketogulonic acid. Japan Patent No. 63 8714.Google Scholar
  20. Fujiwara, A., Hoshino, T. & Sugisawa, T. (1987a). Enzym und Verfahren zu seiner Herstellung. European Patent No. 248 400.Google Scholar
  21. Fujiwara, A., Hoshino, T. & Sugisawa, T. (1987b). Purification and characterization of L-sorbosone dehydrogenase of Gluconobacter. European Patent No. 248 401.Google Scholar
  22. >Fujiwara, A., Sugisawa, T., Shinjoh, M., Setoguchi, Y. & Hoshino, T. (1987c). Process for the manufacture of ketogulonic acid. European Patent No. 213 591.Google Scholar
  23. Fukaya, M., Iwata, T., Entani, E., Masai, H., Uozumi, T. & Beppu, T. 1985a. Distribution and characterization of plasmids in acetic acid bacteria. Agric. Biol. Chem., 49, 1349–55.CrossRefGoogle Scholar
  24. Fukaya, M., Takayama, K., Okumura, H., Masai, H., Uozumi, T. & Beppu, T. (1985b). Improved transformation method for Acetobacter with plasmid DNA. Agric. Biol. Chem., 49, 2091–7.CrossRefGoogle Scholar
  25. Fukaya, M., Okumura, H., Masai, H., Uozumi, T. & Beppu, T. (1985c). Development of a host-vector system for Gluconobacter suboxydans. Agric. Biol. Chem., 49, 2407–11.CrossRefGoogle Scholar
  26. Garcia, J. L. & Buesa, J. M. (1986). An improved method to clone penicillin acylase genes: Cloning and expression in Escherichia coli of penicillin G acylase from Kluyvera citrophila. J. Biotechnol., 3, 187–95.CrossRefGoogle Scholar
  27. Geiger-Huber, M. & Galli, H. (1945). Uber den Nachweis der L-Ascorbinsäure ais Stoffwechsel-produkt von Aspergillus niger. Helv. Chim. Acta, 28, 248–50.CrossRefGoogle Scholar
  28. Geigert, J., Hirano, D. S. & Neidleman, S. L. (1981). High performance liquid chromatographic method for the determination of L-ascorbic acid and D-isoascorbic acid. J. Chromatogr., 206, 396.CrossRefGoogle Scholar
  29. Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K. & Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U.S.A., 76, 106–10.CrossRefGoogle Scholar
  30. Gray, E. B. (1947a). 2-Keto-gulonic acid and its salts. US Patent No. 2 421 611.Google Scholar
  31. Gray, E. B. (1947b). 2-Keto-gulonic acid and its salts. US Patent No. 2 421 612.Google Scholar
  32. Grindley, J. F., Payton, M. A., Van de Pol, H. & Hardy, K. G. (1988). Conversion of glucose to 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a recombinant strain of Erwinia citreus. Appl. Environ. Microbiol., 54, 1770–5.Google Scholar
  33. Hardy, K., Van de Pol, H., Grindley, J. & Payton, M. A. (1987). Production of a vitamin C precursor using genetically modified organisms. WO 87/00863. Haworth, W. N. & Hirst, E. L. (1933). Ascorbic acid. Chem. Ind. (London), 52, 645–6.CrossRefGoogle Scholar
  34. Hirst, E. L. (1939). The structure and synthesis of vitamin C and its analogs. Fortschr. Chem. Org. Naturst., 2, 132–59.Google Scholar
  35. Hirst, E. L., Percival, E. G. V. & Smith, F. (1933). Ascorbic acid. Nature, Lond., 131, 617.Google Scholar
  36. Holloway, B. W. (1986). Organization of the Pseudomonas genome. In Proceedings of the 5th International Symposium on the Genetics of Industrial Micro-organisms, ed. M. Alačević, D. Hranueli & Z. Toman. Pliva, Zagreb, pp. 393–401.Google Scholar
  37. Huang, H. T. (1962). 2-Keto-L-gulonic acid. US Patent No. 3 043 749.Google Scholar
  38. Hughes, D. E. (1983). Titrimetric determination of ascorbic acid in commercial liquid diets with 2,6-dichloroindophenol. J. Pharmac. Sci., 72, 126–9.CrossRefGoogle Scholar
  39. Isono, M., Nakanishi, K., Sasajama, K., Motizuki, K., Okazaki, H. & Yoshino, H. (1968). 2-Keto-L-gulonic acid fermentation. I Paper chromatographic characterization of metabolic products from sorbitol and L-sorbose by various bacteria. Agric. Biol. Chem., 32, 424–31.Google Scholar
  40. IUPAC-IUB (1965). Commission on Biochemical Nomenclature. Biochim. Biophys. Acta, 107, 4.Google Scholar
  41. Jaffe, G. M. (1984). Ascorbic acid. In Encyclopedia of Chemical Technology, Vol. 24, ed. R. E. Kirk & D. F. Othmer. John Wiley & Sons, New York, pp. 8–40. Google Scholar
  42. Kahn, M. S. & Manning, R. F. (1988). Process for the preparation of keto-gulonic acid. European Patent No. 276 832.Google Scholar
  43. Kanzaki, T. & Okazaki, H. (1970). 2-Keto-L-gulonic acid fermentation. IV L-Sorbose metabolism in Pseudomonas aeruginosa. Agric. Biol. Chem., 34, 432–6.Google Scholar
  44. Karube, I., Suzuki, S. & Vandamme, E. J. (1984). Antibiotic production with immobilized living cells. In Biotechnology of Industrial Antibiotics, ed. E. J.Vandamme. Marcel Dekker, New York, Basel, pp. 762–80.Google Scholar
  45. Katznelson, H., Tanebaum, S. W. & Tatum, E. L. (1953). Glucose, gluconate and 2-ketogluconate oxidation by Acetobacter melanogenus. J. Biol. Chem., 204, 43–59.Google Scholar
  46. Kieslich, K. (1984). Present state of biotechnological productions of pharmaceuticals. In Proceedings of the 3rd European Congress on Biotechnology, Vol. IV. VCH, Weinheim, pp. 39–72.Google Scholar
  47. Kita, D. A. (1979). Fermentation process for converting L-gulonic acid to 2-keto-L-gulonic acid. US patent No. 4 115 812.Google Scholar
  48. Kita, D. A. & Hall, K. E. (1981a). Preparation of 2-keto-L-gulonic acid. US Patent No.4 245 049.Google Scholar
  49. Kita, D. A. & Hall, K. E. (1981b). Process for producing 2,5-diketo-gluconic acid. US Patent No. 4 263 402.Google Scholar
  50. Kitamura, I. & Perlman, D. (1975). Conversion of L-sorbose to L-sorbosone by Gluconobacter melanogenus. Biotechnol. Bioeng., 17, 349–59.Google Scholar
  51. Klein, J. & Wagner, F. (1978). Immobilized whole cells. Biotechnology, Dechema, 82. Verlage Chemie, Weinheim, New York, pp. 142–164.Google Scholar
  52. Kulbe, K. D. & Knopki, G. (1986). Process for the intrasequential cofactor regeneration in enzymatic synthesis, particularly when producing vitamine C. WO 86/04353.Google Scholar
  53. Kulhanek, M. (1970). Fermentation processes employed in vitamin C synthesis. In Advances in Applied Microbiology, Vol. 12, ed. D. Perlman. Academic Press, New York, London, pp. 11–33. Google Scholar
  54. Lazarus, R. A. & Seymour, J. L. (1986). Determination of 2-keto-L-gulonic and other ketoaldonic and aldonic acids produced by ketogenic bacterial fermentation. Analyt. Biochem., 157, 360–6.CrossRefGoogle Scholar
  55. Loewus, F. A.(1980). L-Ascorbic acid: metabolism, biosynthesis, function. In Biochemistry of Plants, Vol. 3, ed. J. Preiss. Academic Press, New York, pp. 77–99.Google Scholar
  56. Lu, S., Huang, S. & Yu, J. (1985). Rules of the supply and demand of oxygen and scale up for vitamin C fermentation. Huaxue Fanying Gongcheng Yu Gongyi, 1, 72–82.Google Scholar
  57. Makover, S. & Pruess, D. L. (1976). 2-Keto-L-gulonic acid. Swiss Patent No. 580 161.Google Scholar
  58. Makover, S., Ramsey, G. B., Vane, F. M. & Witt, C. G. (1975). New mechanisms for the biosynthesis and metabolism of 2-keto-L-gulonic acid in bacteria. Biotechnol. Bioeng., 17, 1485–514.CrossRefGoogle Scholar
  59. Martin, C. K. A. & Perlman, D. (1975). Stimulation by organic solvents and detergents of conversion of L-sorbose to L-sorbosone by Gluconobacter melanogenus IFO 3293. Biotechnol. Bioeng., 17, 1473–83.CrossRefGoogle Scholar
  60. Martin, C. K. A. & Perlman, D. (1976). Conversion of L-sorbose to L-sorbosone by immobilized cells of Gluconobacter melanogenus IFO 3293. Biotechnol. Bioeng., 18, 217–37.CrossRefGoogle Scholar
  61. Mayer, H., Collins, J. & Wagner, F. (1979). Cloning of the penicillin G-acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids. In Plasmids of Medical, Environmental and Commercial Importance, ed. K. M. Timmis & A. Puhler. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 187–94.Google Scholar
  62. Merck Index, The, 10th edn. (1983). Merck & Co., Rahway, New Jersey, p. 844.Google Scholar
  63. Miller, J. V., Estell, D. A. & Lazarus, R. A. (1987). Purification and characterization of 2,5-diketo-D-gluconate reductase from Corynebacterium sp. J. Biol. Chem., 262, 9016–20.Google Scholar
  64. Mochizuki, K., Kanzaki, T., Kusunoki, T. & Okazaki, H. (1969a). Idonic acid by oxidation of sorbose with Pseudomonas. Japan Patent No. 69 08073.Google Scholar
  65. Mochizuki, K., Kanzaki, T., Okazaki, H. & Doi, M. (1969b). 2-Keto-L-gulonic acid by Acetobacter fermentation of L-idonic acid. Japan Patent No. 69 08074.Google Scholar
  66. Morikawa, Y., Karube, I. & Suzuki, S. (1979). Penicillin G production by immobilized whole cells of Penicillium chrysogenum. Biotechnol. Bioeng., 21, 261–70.CrossRefGoogle Scholar
  67. Morikawa, Y., Karube, I. & Suzuki, S. (1980). Continuous production of bacitracin by immobilized living whole cells of Bacillus sp. Biotechnol. Bioeng., 22, 1015–23.CrossRefGoogle Scholar
  68. Murty, N. K. & Rao, K. R. (1979). Vitamine C (ascorbic acid). In Methods in Enzymology, Vol. 62, ed. D. B. McCormick & L. D. Wright. Academic Press, New York, San Francisco, London, p. 12.Google Scholar
  69. Nakanishi, I., Sasajima, K., Isono, M. & Takeda, R. (1964a). Keto acid fermentation. I Oxidation of D-gluconic and L-idonic acids by genus Pseudomonas. Takeda Kenkyusho Nempo, 23, 38–47.Google Scholar
  70. Nakanishi, I., Sasajima, K., Isono, M. & Takeda, R. (1964b). Keto acid fermentation. II Differential determination of 2-oxo-D-gluconic and 2-oxo-L-idonic acids. Takeda Kenkyusho Nempo, 23, 48–53.Google Scholar
  71. >Ning, W., Tao, Z., Wang, C, Wang, S., Yan, Z. & Yin, G. (1988). Fermentation process for producing 2-keto-L-gulonic acid from sorbose. European Patent.No. 278 447.Google Scholar
  72. Nogami, I., Shirafuji, H., Oka, M. & Yamaguchi, T. (1987). A method for producing 2-keto-L-gulonic acid. European Patent No. 221 707.Google Scholar
  73. Obata, Y., Nara, K., Tarui, K., Mochizuki, K. & Isono, M. (1975). L-Ascorbic acid. Japan Patent No. 75 22113.Google Scholar
  74. Oga, S., Sato, K., Imada, K. & Asano, K. (1972). Fermentative manufacture of 2,5-diketogluconic acid. Japan Patent No. 72 38193.Google Scholar
  75. Ogawa, T., Uzawa, J. & Matsui, M. (1977). A carbon-13 NMR study on the conformation of L-ascorbic acid in deuterium oxide. Carbohydr. Res., 59, 32–5. Okazaki, H., Kanzaki, T., Doi, M., Nara, K. & Motizuki, K. (1968). 2-Keto-L-gulonic acid. II. Identification of metabolic products from sorbitol. Agric. Biol. Chem., 32, 125–5.Google Scholar
  76. Okazaki, H., Kanzaki, T., Sasayama, K. & Taketa, Y. (1969). 2-Keto-L-gulonic acid. III Evaluation of the pathway of sorbitol metabolism in Gluconobacter melanogenus. Agric. Biol. Chem., 33, 207–11.Google Scholar
  77. Old, R. W. & Primrose, S. B. (1985). Principles of Gene Manipulation, 3rd edn. Blackwell Scientific Publications, Oxford.Google Scholar
  78. Palleroni, N. J. (1986). Isolation and characterization of R’ plasmids in Gluconobacter oxydans. In Proceedings of the 5th International Symposium on Genetics of Industrial Micro-organisms, ed. M. Alačević, D. Hranueli & Z. Toman. Pliva, Zagreb, pp. 415–24.Google Scholar
  79. Pelletier, O. (1985). Vitamin C (L-Ascorbic and dehydro-L-ascorbic acids). In Methods of Vitamin Assay, 4th edn, ed. J. Augustin, B. P. Klein, D. A. Becker & P. B. Venugopal. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, pp. 303–47.Google Scholar
  80. Pelletier, O. & Brassard, R. (1977). Determination of vitamin C (L-ascorbic acid and dehydroascorbic acid) in food by manual and automated photometric methods. J. Food Sci., 42, 1471.CrossRefGoogle Scholar
  81. Perlman, D. (1959). Preparation of 2-keto-L-gulonic acid by Pseudomonas aeruginosa. US Patent No. 2 917 435.Google Scholar
  82. Pomortseva, N. V. & Krasil’nikova, T. N. (1983). Okislenie D-sorbita v L-sorbozu immobilizovanimi kletkami Gluconobacter oxydans. Khim.-Farm. Zh., 17, 721–5.Google Scholar
  83. Primrose, S. B. (1987). Modern Biotechnology. Blackwell Scientific Publications, OxfoGoogle Scholar
  84. Ramakrishnan, C. V. & Desai, P. J. (1956). Effect of addition of iron, cobalt and ascorbic acid to the medium on the synthesis of ascorbic acid in molds. Current Sci. (India), 25, 189–90.Google Scholar
  85. Razumovskaya, Z. G. (1962). Obzori puti izpolzovanija mikroorganizmov v sinteze vitamina C. Mikrobiologiya, 31, 172–8.Google Scholar
  86. Razumovskaya, Z. G. & Vasil’eva, O. A. (1956). Oxidation of glucose by acetic acid bacteria. Ser. Biol. Nauk, 41, 57–66.Google Scholar
  87. Rehm, H. J. & Reed, G. (1981). Biotechnology, Microbial Fundamentals. Verlag Chemie, Weinheim, Deerfield, Florida, Basel.Google Scholar
  88. Reichstein, T. & Grüssner, A. (1934). Eine ergiebige Synthese der 1-Ascorbinsäure. (C-Vitamin). Helv. Chim. Acta, 17, 311–28.Google Scholar
  89. Reichstein, T., Grüssner, A. & Oppenauer, R. (1933). Synthese der d- und 1-Ascorbinsäure (C-Vitamin). Helv. Chim. Acta, 16, 1019–33.CrossRefGoogle Scholar
  90. Reichstein, T., Grüssner, A. & Oppenauer, R. (1934). Synthese der Ascorbinsäure und verwandter Verbindungen nach der Oson-Blausäure-Methode. Helv. Chim. Acta, 17, 510–20.CrossRefGoogle Scholar
  91. Robakis, N. K., Palleroni, N. J., Despreaux, C. W., Boublik, M., Baker, C. A., Churu, P. J. & Claus, G. W. (1985a). Isolation and characterization of two phages for Gluconobacter oxydans. J. Gen. Microbiol., 131, 2467–73.Google Scholar
  92. Robakis, N. K., Palleroni, N. J., Boublik, M. & Despreaux, C. W. (1985b). Construction of a restriction map for the Gluconobacter bacteriophage A-l genome. J. Gen. Microbiol., 131, 2475–7.Google Scholar
  93. Roland, J. F., Cayle, T., Dinwoodie, R. C. & Mehnert, D. W. (1985). Bioconversion production of ascorbic acid. WO 85/01745.Google Scholar
  94. Roland, J. F., Cayle, T., Dinwoodie, R. C. & Mehnert, D. W. (1986). Fermentation production of ascorbic acid from L-galactonic substrate. US Patent No. 4565 659.Google Scholar
  95. Rose, R. C. & Nahrwold, D. L. (1981). Quantitative analysis of ascorbic acid and dehydroascorbic acid by high-performance liquid chromatography. Analyt. Biochem., 114, 140.CrossRefGoogle Scholar
  96. Sastry, K. S. & Sarma, P. S. (1957). Glucuronic acid, a precursor of ascorbic acid in Aspergillus niger. Nature, Lond., 179, 44–5.CrossRefGoogle Scholar
  97. Schauenstein, E., Ochsenfeld-Lohr, I., Puxkandl, H. & Stampfer, M. (1948). Spectrographic absorption studies on L-ascorbic acid. Monatsch. Chem., 79, 487–98.CrossRefGoogle Scholar
  98. Schlack, J. E. (1974). Quantitative determination of L-ascorbic acid by gas-liquid chromatography. J. Assoc. Off. Anal. Chem., 37, 1346.Google Scholar
  99. Scott, C. D. (1987). Immobilized cells: a review of recent literature. Enzy. Micr. Tech. Biotech. Res. Rev., 9, 66–73.CrossRefGoogle Scholar
  100. Sebrell, W. H. Jr & Harris, R. S. (1967). The Vitamins. Chemistry, Physiology, Pathology Methods, Vol. 1, ed. W. H. Sebrell, Jr & R. S. Harris. Academic Press, New York, pp. 306–501. Google Scholar
  101. Shinagawa, E., Mutsushita, K., Adachi, O. & Ameyama, M. (1982). Purification and characterization of d-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric. Biol. Chem., 46, 135–41. CrossRefGoogle Scholar
  102. Shine, J. & Dalgarno, L. (1974). 3′,-Terminal sequence of Escherichia coli 16 S ribosomal RNA: Complementary to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sei. U.S.A., 71, 1342–6.CrossRefGoogle Scholar
  103. Shoemaker, R. N. (1956). Microbiological oxidation of idonic acid to 2-keto-L-gulonic acid. US Patent No. 2 741 577.Google Scholar
  104. Skatrud, T. J. & Huss, R. J. (1987). L-Ascorbic acid production in Chlorella. European Patent No. 207 763.Google Scholar
  105. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (1980). Approved lists of bacterial names. Int. J. Syst. Bacteriol., 30, 225–420.CrossRefGoogle Scholar
  106. Sonoyama, T. & Kobayashi, K. (1987). Purification and properties of two 2,5-diketo-D-gluconate reductases from a mutant derived from Corynebacterium sp. J. Ferment. Technol, 65, 311–17.CrossRefGoogle Scholar
  107. Sonoyama, T., Kageyama, B. & Honjo, T. (1974a). 2-Keto-L-gulonic acid by fermentation. German Patent No. 2 413 963.Google Scholar
  108. Sonoyama, T., Kageyama, B. & Honjo, T. (1974b). L-Idonic acid or its salt production by Brevibacterium. Japan Kokai 74 125 589.Google Scholar
  109. Sonoyama, T., Tani, H., Kageyama, B., Kobayashi, K., Honjo, T. & Yagi, S. (1976). 2-Keto-L-gulonic acid. German Patent No. 2 530 861.Google Scholar
  110. Sonoyama, T., Tani, H., Matsuda, K., Kageyama, B., Tanimoto, M., Kobayashi, K., Yagi, S., Kyotani, H. & Mitsushima, K. (1982). Production of 2-keto-L-gulonic acid from D-glucose by two-stage fermentation. Appl.Environ. Microbiol., 43, 1064–9.Google Scholar
  111. Sonoyama, T., Yagi, S. & Kageyama, B. (1983a). 2-Keto-L-gulonic acid and a mutant producing it. European Patent No. 88408.Google Scholar
  112. Sonoyama, T., Yagi, S. & Kageyama, B. (1983b). 2-Keto-L-gulonic acid. European Patent No. 88409.Google Scholar
  113. Sonoyama, T., Yagi, S., Kageyama, B. & Tanimoto, M. (1986). 2,5-Diketo-D-gluconic acid-producing Erwinia species. Japan Patent No. 86 63278.Google Scholar
  114. Sonoyama, T., Kageyama, B. & Yagi, S. (1987a). Distribution of micro-organisms capable of reducing 2,5-diketo-D-gluconate to 2-keto-L-gulonate. Agric. Biol. Chem., 51, 2003–4.CrossRefGoogle Scholar
  115. Stefanova, S., Koseva, M., Tepavicharova, I. & Beshkov, V. (1987). L-Sorbose production by cells of the strain Gluconobacter suboxydans entrapped in a polyacrylamide gel. Biotechnol. Lett., 9, 475–7.CrossRefGoogle Scholar
  116. Stroshane, RM. & Perlman, D. (1977). Fermentation of glucose by Acetobacter melanogenus. Biotechnol. Bioeng., 19, 459–65.CrossRefGoogle Scholar
  117. Stubbs, JJ., Lockwood, LB . , Roe, ET., Taubenkin, B . & Ward, GE. (1940). Ketogluconic acids from glucose. Bacterial production. Ind. Eng. Chem., 32, 1626–31CrossRefGoogle Scholar
  118. Svirbely, JL & Szent-Györgyi, J. (1933). Vitamin C. Biochem. J., 27, 279–85.Google Scholar
  119. Szent-Györgyi, A.(1928). Function of peroxidase systems and chemistry of the adrenal cortex-carbohydrate derivat. Biochem. J., 22,138–409.Google Scholar
  120. Takeda Chemical Industries Ltd (1964). Manufacture of 2-keto-L-gulonic acid. French Patent No. 1 376 741.Google Scholar
  121. Takeda, R., Isono, M., Nakanishi, T. & Sasajima, K. (1964). 2-Keto-L-gulonic acid. Japan Patent No. 64 2463.Google Scholar
  122. Tengerdy, PR.(1961a). Redox potential changes in the 2-keto-L-gulonic acid fermentation. I Correlation between redox potential and dissolved oxygen concentration. J. Biochem. Microbiol. Tech. Eng., 3, 241–53.CrossRefGoogle Scholar
  123. Tengerdy, P. R. (1961b). Redox potential changes in the 2-keto-L-gulonic acid fermentation. II Relationship betwen redox potential and product formation. J. Biochem. Microbiol. Tech. Eng., 3, 255–60.Google Scholar
  124. Teramoto, S., Yagi, R. & Hori, I. (1946). Utilization of oxidative fermentation. IV Basal studies of manufacturing 5-keto-gluconic acid. J. Ferment. Technol., 24, 22–6.Google Scholar
  125. Thompson, RQ. (1987). Peroxidase-based colorimetric determination of L-ascorbic acid. Analyt. Chem., 59, 1119–21.CrossRefGoogle Scholar
  126. Tsukada, Y. & Perlman, D. (1972a). The fermentation of L-sorbose by Gluconobacter melanogenus. I General characteristics of the fermentation. Biotechnol. Bioeng 14, 799–810CrossRefGoogle Scholar
  127. Tsukada, Y. & Perlman, D. (1972b). The fermentation of L-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of L-sorbose to 2-keto-L-gulonic acid. Biotechnol. Bioeng., 14, 811–8.Google Scholar
  128. Tsukada, Y. & Perlman, D. (1972c). The fermentation of L-sorbose by Gluconobacter melanogenus. III Investigation of the metabolic pathway from sorbose to 2-keto-Lgulonic acid. Biotechnol. Bioeng., 14, 1035–8.Google Scholar
  129. Ullmanns, (1983). Encyklopadie der technischen Chemie, Vol. 23. Verlag Chemie, Weinheim, Basel, pp. 685–92.Google Scholar
  130. Vandamme, E. J. (1984). Biotechnology of Industrial Antibiotics. Marcel Dekker, New York, Basel.Wakisaka, Y. (1964a). 2,5-dioxogluconic acid by fermentation process. Japan Patent No. 64 14493.Google Scholar
  131. Wakisaka, Y. (1964b). Carbohydrates oxidation by Pseudomonas albosesamae. nov. sp. I Taxonomic studies on a newly isolated bacterium P. albosesamae. Agric. Biol. Chem., 28, 369–74.Google Scholar
  132. Wakisaka, Y. (1964c). Carbohydrate oxidation by Pseudomonas albosesamae. nov. sp. II Chemical structure of the product on glucose and gluconate oxidation. Agric. Biol. Chem., 28, 819–27.Google Scholar
  133. Werneke, J. M., Sligar, S. G. & Schuler, M. A. (1985). Development of broadhost-range vectors for expression of cloned genes in Pseudomonas. Gene, 38, 73–84.Google Scholar
  134. Yamazaki, M. (1953a). Preparation of vitamine C by fermentation. II Isolation of 2-oxo acids. J. Ferment. Technol., 31, 86–90.Google Scholar
  135. Yamazaki, M. (1953b). Preparation of vitamine C by fermentation. III Oxidation of Ca-L-idonate and Ca-D-gluconate mixture by Pseudomonas. J. Ferment. Technol., 31,126–30.Google Scholar
  136. Yamazaki, M. (1953c). Preparation of vitamine C by fermentation. IV Oxidation of the mixture of Ca-L-idonate and Ca-D-gluconate by Pseudomonas in shake culture. J. Ferment. Technol., 31, 230–4Google Scholar
  137. Yamazaki, M. (1955). 2-Oxogulonic acid. Japan Patent No. 55 5331.Google Scholar
  138. Yamazaki, M. & Miki, T. (1953). Preparation of vitamine C by fermentation. I Preparation of Ca-L-idonate and Ca-D-gluconate from Ca-5-keto-D-gluconate. J. Ferment. Technol., 31, 39–42.Google Scholar
  139. Yan, Z. Z. et al. (1981). Studies on production of vitamin C precursor 2-keto-L-gulonic acid from L-sorbose by fermentation. II Study on fermentation conditions. Wei Sheng Wu Hsueh Pao, 21,185–91.Google Scholar
  140. Yin, G. L. et al. (1980). Studies on the production of vitamin C precursor 2-keto-L-gulonic acid from L-sorbose by fermentation. I Isolation, screening and identification of 2-keto-L-gulonic acid producing bacteria. Wei Sheng Wu Hsueh Pao, 20, 246-51. Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • V. Delić
    • 1
  • D. Šunić
    • 1
  • D. Vlašić
    • 1
  1. 1.Chemical, Food And Cosmetic Industry, Research InstitutePLIVA PharmaceuticalZagrebYugoslavia

Personalised recommendations