Advertisement

Ceramic Matrix Composites

Chapter

Abstract

Advanced ceramics such as alumina, zirconia, silicon nitride and silicon carbide are characterised by good resistance to wear, oxidation and corrosion, when compared with metals and thermoplastics. However, the use of monolithic ceramics is often limited by their low mechanical reliability. Ceramic matrix composites, with refractory particles or fibres dispersed as a second phase in a ceramic matrix, are characterised by a higher degree of mechanical reliability, and may be the subject of industrial development for specific applications. The aim of this contribution is to give a survey of ceramic matrix composites, summarising the state of the art in their manufacture, their physical properties, and their potential industrial development in the near future. Special attention will be given to whisker reinforced ceramics that appear to be a very promising class of composites because of their good mechanical properties and their simple manufacturing routes.

Keywords

Silicon Nitride Ceramic Composite Ceramic Matrix Composite Zirconia Particle Pressureless Sinter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tani, E. et al. Effects of size of grains with fibre-like structure of Si3N4 on fracture toughness, J. Mater Sci Lett., 4 (1985) 1454–6.CrossRefGoogle Scholar
  2. 2.
    Rice, R W. Mechanisms of toughening in ceramic matrix composites, Ceram. Engng Sci. Proc., 5 (1985) 589–607.CrossRefGoogle Scholar
  3. 3.
    Ceramic composite issue, Am. Ceram. Soc. Bull., Special issue; 65 (1986) 288–380.Google Scholar
  4. 4.
    Ceramic composite issue, Am. Ceram. Soc. Bull., Special issue, 66 (1987) 303–76.Google Scholar
  5. 5.
    Ceramic matrix composites, Composites, Special issue, 18 (1987) 86–163.Google Scholar
  6. 6.
    Marshall, D. B. and Evans, A. G. Failure mechanisms in ceramic-fiber-ceramic matrix composites, J. Am. Ceram. Soc., 68 (1985) 225–31.CrossRefGoogle Scholar
  7. 7.
    Faber, K. T. and Evans, A. G. Crack deflection processes, Acta Metall, 31 (1983) 565–84.CrossRefGoogle Scholar
  8. 8.
    Guide to selecting engineered materials, Advanced Materials and Processes, Special issue (1987) 82–3.Google Scholar
  9. 9.
    Evans, A G. and Faber, KL T. Crack growth resistance of microcracking brittle materials, J. Am. Ceram. Soc., 67 (1984) 255–60.CrossRefGoogle Scholar
  10. 10.
    Evans, A. G., Toughening mechanism in ZrO2 alloys. In: Science and technology of zirconia II, Claussen, N., Rühle, M. and Heuer, A. H. (eds), Columbus, Ohio, American Ceramic Society, 1984, pp. 193–212.Google Scholar
  11. 11.
    Rice, R. W. and Freiman, S. W. Grain-size dependence of fracture energy in ceramics: II, Models for noncubic materials, J. Am. Ceram. Soc., 64 (1981) 350–4.CrossRefGoogle Scholar
  12. 12.
    Evans, A G. and Heuer, A H. Transformation toughening in ceramics: martensitic transformations in crack-tip stress field, J. Am. Ceram. Soc., 63 (1980) 241–8.CrossRefGoogle Scholar
  13. 13.
    Budiansky, B., Hutchinson, J. and Lambroupolos, J. Continuum theory of dilatent transformation toughening in ceramics, Int. J. Solids Struct., 19 (1983) 337–55.CrossRefGoogle Scholar
  14. 14.
    Lange, F. F., Transformation toughening, J. Mater. Sci., 17 (1982) 225–55.CrossRefGoogle Scholar
  15. 15.
    Reed, J. S. and Lejus, A M. Affect of grinding and polishing on near–surface phase transformation in zirconia, Mater. Res. Bull, 12 (1977) 949–54.CrossRefGoogle Scholar
  16. 16.
    Heuer, A. H., Claussen, N., Kriven, W. M. and Rühle, M. Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc., 65 (1982) 642–50.CrossRefGoogle Scholar
  17. 17.
    Wilfinger, K. and Cannon, W. R Processing of transformation-toughened alumina, Ceram. Proceed. ACS, Sept./Oct. 1986, 13th Automotive Mat. Conf., Michigan, Nov. 1985.Google Scholar
  18. 18.
    Dutta, S. and Buzek, B. Microstructure strength and oxidation of a 10 wt% zittrite-Si3N4 ceramic, J. Am. Ceram. Soc., 67 (1984) 89–92.CrossRefGoogle Scholar
  19. 19.
    Lange, F. F. The interaction of a crack front with a second phase dispersion, Phil. Mag., 22 (1970) 983–92.CrossRefGoogle Scholar
  20. 20.
    Mazdiyasni, K. S. and Ruh, R, High/low modulus Si3N4-BN composite for improved electrical and thermal shock behaviour, J. Am. Ceram. Soc., 64 (1981) 415–19.CrossRefGoogle Scholar
  21. 21.
    Goeuriot-Launay, D., Brayet, G. and Thevelot, F. Boron nitride effect on the thermal shock resistance of an alumina-based ceramic composite, J. Mater. Sci. Lett., 5 (1986) 940–2.CrossRefGoogle Scholar
  22. 22.
    Swanson, P. L. et al., Crack-interface grain bridging as a fracture resistance mechanism in ceramics, J. Am. Ceram. Soc., 70 (1987) 279–94.CrossRefGoogle Scholar
  23. 23.
    Marshall, D. B. and Ritter, J. E. Reliability of advanced structural ceramics and ceramic–matrix composites — a review, Am. Ceram. Soc. Bull, 66 (1987) 309–17.Google Scholar
  24. 24.
    Rühle, M., Dalgleish, B. J. and Evans, A. G., On the toughening of ceramics by whiskers, Scripta Metall, 21 (1987) 681–6.CrossRefGoogle Scholar
  25. 25.
    Porter, J. R., Lange, F. F. and Chokshi, A. H. Processing and creep performance of SiC-whiskers-reinforced A12O3, Am. Ceram. Soc. Bull, 66 (1987) 343–7.Google Scholar
  26. 26.
    Key advanced ceramic markets — Part II, High-Tech Materials Alert, August (1987), pp. 5–7.Google Scholar
  27. 27.
    Multitoughening ceramic, Technical Ceramics Bulletin, 2, 2 (1987) 14.Google Scholar
  28. 28.
    Advanced engine project of US Department Energy, Industrie Céramique, 815 (1987) 232–5.Google Scholar
  29. 29.
    Buljan, S. T. and Sarin, V. K. Silicon nitride-based composites, Composites, 18 (1987) 99–106.CrossRefGoogle Scholar
  30. 30.
    Buljan, S. T. and Sarin, V. fc Silicon nitride-based composites. In: Sintered metal ceramic composites, Upadhyaya, G. S. (ed.), Amsterdam, Elsevier, 1984, pp. 455–68.Google Scholar
  31. 31.
    Kamijo, E. et al Electrical discharge machinable Si3N4 ceramics, Sumitomo Electric Technical Review, 24 (1985) 183–90.Google Scholar
  32. 32.
    SiC–Si3N4 composite, High–Tech Materials Alert, August (1986) 9.Google Scholar
  33. 33.
    Mah, T., Mendiratta, M. G., Katz, A. P. and Mazdiyasni, K. S. Recent developments in fiber-reinforced high temperature ceramic composites, Am. Ceram. Soc. Bull, 66 (1987) 304–17.Google Scholar
  34. 34.
    Prewo, K, M., Brennan, J. J. and Layden, G. JL Fiber reinforced glasses and glass-ceramics for high performance applications, Am. Ceram. Soc. Bull, 65 (1986) 305–13.Google Scholar
  35. 35.
    Claussen, N. and Petzow, G. Whisker-reinforced oxide ceramics, J. Physique, C1 (1986) 693–702.Google Scholar
  36. 36.
    Kolaska, H., Dreyer, KL and Reiter, N. Property improvements in various ceramics through whisker reinforcement, PM’86, Düsseldorf, July, 1986.Google Scholar
  37. 37.
    Double fracture toughness of ceramics, Inside R&D, June (1987) 3.Google Scholar
  38. 38.
    Rothmann, E. R. and Torre, J. P., The use of ceramics in automotive engines, Present Status and Development of Ceramics in Mechanical Industries, Saint-Ouen, France, June 1987.Google Scholar
  39. 39.
    Broquere, B., From carbon-carbon composites to carbon-ceramic composites, Ceramic-Ceramic Composites, Mons Belgium, April 1987.Google Scholar
  40. 40.
    Petiau, C. and Verneuil, J. C., Thermal insulation of Hermes shuttle, Thermal Transfer at High Temperature, Chatenay-Malabry, France, May 1987.Google Scholar
  41. 41.
    Brook, R. J., Stress development during the sintering of composite ceramic systems, Ceramic-Ceramic Composites, Mons, Belgium, April 1987.Google Scholar
  42. 42.
    Guo, J. et al Carbon fibre–reinforced silicon nitride composite, J. Mater. Sci., 17 (1982) 3611–16.CrossRefGoogle Scholar
  43. 43.
    Cornie, J. A et al. Processing of metal and ceramic matrix composites, Am. Ceram. Soc. Bull, 65 (1986) 293–303.Google Scholar
  44. 44.
    Stinton, D. P., Caputo, A J. and Lowden, R. A Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration, Am. Ceram. Soc. Bull, 65 (1986) 347–50.Google Scholar
  45. 45.
    Coyle, T. W., Guyot, M. H. and Jamet, J. F., Mechanical behaviour of a microcracked ceramic composite, Ceram. Engng Sci. Proc., 7 (1986) 947–57.CrossRefGoogle Scholar
  46. 46.
    Corbin, N. D., Rossetti, G. A and Hartline, S. D. Microstructure-property relationships for SiC filament-reinforced RBSN, Ceram. Engng Sci. Proc., 7 (1986) 958–68.CrossRefGoogle Scholar
  47. 47.
    Fitzer, E. and Gadow, R. Fiber-reinforced silicon carbide, Am. Ceram. Soc. Bull., 65 (1986) 326–35.Google Scholar
  48. 48.
    Lamicq, P. J., Bernhart, G. A., Dauchier, M. M. and Mace, J. G. SiC/SiC composite ceramics, Am. Ceram. Soc. Bull, 65 (1986) 236–8.Google Scholar
  49. 49.
    Wilfinger, K. and Cannon, W. R. Processing of transformation-toughened alumina, Ceram. Engng Sci. Proc., 7 (1986) 1169–81.CrossRefGoogle Scholar
  50. 50.
    Takas, F., Cannon, W. R. and Danforth, S. C. Colloidal processing of a SiC whisker-reaction bonded Si3N4 composite, Ceram. Engng Sci. Proc., 7 (1986) 990–3.CrossRefGoogle Scholar
  51. 51.
    Mathieu, P. and Calès, B., Processing and properties of whiskers reinforced zirconia-toughened alumina, Ceramic-Ceramic Composites, Mons, Belgium, April 1987.Google Scholar
  52. 52.
    Calès, B., Mathieu, P. and Torre, J. P., Preparation and characterization of whiskers reinforced zirconia toughened alumina, Science of Ceramics 14, Canterbury, Sept. 1987.Google Scholar
  53. 53.
    Sarin, V. K. and Rtihle, M. Microstructural studies of ceramic-matrix composites, Composites, 18 (1987) 129–34.CrossRefGoogle Scholar
  54. 54.
    Lunberg, R. et al., Processing of whiskers-reinforced ceramics, Composites, 18 (1987) 125–7.CrossRefGoogle Scholar
  55. 55.
    Borom, M. P. and Lee, M. Effect of heating rate on densification of alumina-titanium carbide composites, Adv. Ceram. Mater., 1 (1986) 335–40.Google Scholar
  56. 56.
    Blake, R. D. and Meet, T. T. Microwave processed composite materials, J. Mater. Sci. Lett., 5 (1986) 1097–8.CrossRefGoogle Scholar
  57. 57.
    Tiegs, T. N. and Becher, P. F. Sintered Al2O3-SiC whisker composites, Am. Ceram. Soc. Bull, 66 (1987) 339–42.Google Scholar
  58. 58.
    Hoffmann, M. J., Greil, P. and Petzow, G., Pressureless sintering of SiC whisker reinforced silicon nitride, Science of Ceramics 14, Canterbury, Sept 1987.Google Scholar
  59. 59.
    Becher, P. F. and Wei, G. C. Toughening behaviour in SiC-whisker-reinforced alumina, J. Am. Ceram. Soc., 67 (1984) C267–C269.CrossRefGoogle Scholar
  60. 60.
    Vigneau, J. and Bordel, P. Influence of the microstructure of the composite ceramic tools on their performance when machining nickel alloys, CIRP Annals, 36 (1987) 13–16.CrossRefGoogle Scholar
  61. 61.
    Lundberg, R et al., Glass encapsulated HIP-ing of SiC whisker reinforced ceramic composites, International Conference on Hot Isostatic Pressing, Liilea, Sweden, June 1987.Google Scholar
  62. 62.
    Takemura, H., Miyamoto, Y. and Koizumi, M., Fabrication of dense Si3N4-SiC whisker composite without additives by HIP-ing, International Conference on Hot Isostatic Pressing, Liilea, Sweden, June 1987.Google Scholar
  63. 63.
    Sainfort, P., Ceramic-ceramic composites, Cegedur-Pechiney Internal Report, 1987.Google Scholar
  64. 64.
    Tiegs, T. N. and Becher, P. F. Thermal shock resistance of an alumina-SiC whisker composite, J. Am. Ceram. Soc., 70 (1987) C109–C111.CrossRefGoogle Scholar
  65. 65.
    Lundberg, R., Kahlman, L., Pompe, R and Carlsson, R SiC-whisker reinforced Si3N4 composites, Am. Ceram. Soc. Bull., 66 (1987) 330–3.Google Scholar
  66. 66.
    Shalek, P. D., Petrovic, J. J., Hurley, G. F. and Gac, F. D. Hot-pressed SiC whisker/Si3N4 matrix composites, Am. Ceram. Soc. Bull, 65 (1986) 351–6.Google Scholar
  67. 67.
    Karpman, M. and Clarck, J. Economics of whisker reinforced ceramics, Composites, 18 (1987) 121–4.CrossRefGoogle Scholar
  68. 68.
    Ceramic composite licence opportunity, High-Tech Materials Alert, 4 (1987) 3.Google Scholar
  69. 69.
    Bracke, P., Schurmans, H. and Verhoest, J. Ceramic matrix composites. In: Inorganic fibers and composite materials, Oxford, Pergamon Press, 1984, pp. 97–121.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  1. 1.Céramiques Techniques DesmarquestTrappesFrance

Personalised recommendations