Advertisement

Nondestructive Evaluation of Advanced Ceramics

Chapter
  • 63 Downloads

Abstract

Advanced ceramics have several advantages which make them important materials for structural applications: low density, high strength and hardness, low heat expansion and good heat conductivity combined with high thermal stability and oxidation resistivity. However, one disadvantage is that even at high temperatures advanced ceramics are brittle, which means that stress peaks at defects cannot be released by plastic flow and ductility. From the stress analytic and fracture mechanical point of view for design loads of some 100 MPa, defects with linear dimensions of 10–100 μm — at the surface still smaller ones — will cause failure. This makes a nondestructive quality control absolutely necessary. Because conventional NDE-methods are able to detect and to characterize defects with dimensions of only about two orders of magnitude higher special research and development efforts were made during the last decade to develop NDE-techniques with high sensitivity and high resolution.

The full variety of NDT-techniques described in the different chapters has demonstrated their ability for quality control of advanced ceramics mostly in laboratory applications and in limited areas of application. Only for high resolution X–ray testing in projection technique does the state of the art of the equipment allow a direct application in practice. However, here the film is the up-to-now accepted receiver medium. The filmless technique, using X-ray sensitive cameras, image intensifiers and other types of solid state detectors, still needs further optimization. For ultrasonic testing, as well as for photoacoustic and vibration analysis, the appropriate equipment is still under development. However the realization of apparatus and sensors that are applicable in practice under economical considerations can be foreseen for the next few years.

Keywords

Acoustic Emission Silicon Nitride Nondestructive Evaluation Ultrasonic Testing Bonding Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evans, A. G., Non-destructive failure prediction in ceramics. In: Progress in nitrogen ceramics, Riley, F. L. (ed.), Boston, Martinus Nijhoff, 1983, pp. 595–625.Google Scholar
  2. 2.
    Rosenfelder, O. and Reiter, H., Fortschrittsberichte der DKG, 1 (1) (1985) 103–12.Google Scholar
  3. 3.
    Marshall, D. B., Surface damage in ceramics. In: Progress in nitrogen ceramics, Riley, F. L. (ed.), Boston, Martinus Nijhoff, 1983, pp. 635–56.Google Scholar
  4. 4.
    Goebbels, K, Hirsekorn, S. and Willems, H., 1984 IEEE Ultras. Symp. Proc, pp. 841–6.Google Scholar
  5. 5.
    Schneider, E., Goebbels, K., Hübschen, G. and Salzburger, H. J., 1981 IEEE Ultras. Symp. Proc, pp. 956–9.Google Scholar
  6. 6.
    Goebbels, K and Hirsekorn, S., NDT International, 17 (1984) 337–41.CrossRefGoogle Scholar
  7. 7.
    Truell, R., Elbaum, C. and Chick, B. B., Ultrasonic methods in solid state physics, New York, Academic Press, 1969.Google Scholar
  8. 8.
    Goebbels, K, Structure analysis by scattered ultrasonic radiation. In: Research techniques in NDT, Vol. IV, Sharpe, R. S. (ed.), London, Academic Press, 1980, pp. 87–157.Google Scholar
  9. 9.
    Papadakis, E. P., J. Acoust. Soc. Amer, 42 (1967) 1045–51.CrossRefGoogle Scholar
  10. 10.
    Schmitz, V., Barbian, O. A, Gebhardt, W. and Salzburger, H. J., Materialprüf, 27 (1985) 49–56.Google Scholar
  11. 11.
    Höller, P. In: Proceedings International Symposium New Methods in NDT, Berlin, DGZfP, 1979, pp. 13–20.Google Scholar
  12. 12.
    Sharpe, R. S and Parish, R. W., Engineering applications of microfocal radiography. In: Microfocal radiography, Ely, R. V. (ed.), London, Academic Press, 1980, pp. 43–81.Google Scholar
  13. 13.
    Reimers, P. and Goebbels, J., Mater. Eval, 41 (1983) 732–7.Google Scholar
  14. 14.
    Berger, H. and Kupperman, D., Mater. Eval, 43 (1985) 201–5.Google Scholar
  15. 15.
    Goebbels, K, Reiter, H., Hirsekorn, S. and Arnold, W., Sci. Ceram, 12 (1983) 483–94.Google Scholar
  16. 16.
    Arons, R. M. and Kupperman, D. S., Mater. Eval, 40 (1982) 1076–8.Google Scholar
  17. 17.
    Goebbels, K and Reiter, H., ZfP-Verfahren für Komponenten der Keramik-Gasturbine. In: Keramische Komponenten für Fahrzeuggasturbinen II, Bunk, W. and Böhmer, M. (eds), Berlin, Springer, 1981, pp. 163–93.Google Scholar
  18. 18.
    Lindner, H. A., Thoma, H. J. and Müller, H. Research Reports 01ZC1833, Cremer Forschungsinstitut, Rödental, 1983 and 1984.Google Scholar
  19. 19.
    Xavier, C. and Hübner, H. W., Sci. Ceram, 11 (1981) 495–502.Google Scholar
  20. 20.
    Weinstein, D. and Shaw, H. J., PVF2-transducers for NDE of ceramics and brittle materials. Stanford University, Report AFOSR-TR 81–0881, Oct. 1981.Google Scholar
  21. 21.
    Tien, J. J. W, Khuri-Yakub, B. T., Kino, G. S., Marshall, D. B. and Evans, A. G., J. NDE, 2 (1981) 219–29.Google Scholar
  22. 22.
    Fahr, A., Johar, S. and Murthy, M. K, Review of progress in quantitative NDE, Vol.3A, Thompson, D. O. and Chimenti, D. E. (eds), New York, Plenum Press, 1984, pp. 239–49.Google Scholar
  23. 23.
    Kupperman, D. S., Caines, M. J. and Winiecki, A, Mater. Eval, 40 (1982) 774–82.Google Scholar
  24. 24.
    Kessler, L. W. and Yuhas, D. E., Scann. El. Microscopy, 1 (1978) 555–60.Google Scholar
  25. 25.
    Lemons, R. A and Quate, C. F., Acoustic microscopy. In: Physical acoustics, Vol. XIV, Mason, W. P. and Thurston, R N. (eds), New York, Academic Press, 1979, pp. 1–92.Google Scholar
  26. 26.
    Reiter, H. and Arnold, W., Beitr. Elektronenmikroskop. Direktabb. Obetfl. (BEDO), 17 (1984) 129–36.Google Scholar
  27. 27.
    Rosencwaig, A., Thermal-wave imaging and microscopy. In: Scanned image microscopy, Ash, E. (ed.), London, Academic Press, 1980, pp. 291–317.Google Scholar
  28. 28.
    Ash, E. (ed.), Scanned image microscopy; London, Academic Press, 1980.Google Scholar
  29. 29.
    Goebbels, K. and Reiter, H, IzfP-Res. Report 810127, Saarbrücken, 1981.Google Scholar
  30. 30.
    Wong, Y. H., Scanning photo-acoustic microscopy. In: Scanned image microscopy, Ash, E. A (ed.), London, Academic Press, 1980, pp. 247–71.Google Scholar
  31. 31.
    Jaarinen, J. and Luukkala, M., In: Proc. 3rd European Conference on NDT, Italian Society for NDT, Florence, Italy, 1984, pp. 128–138.Google Scholar
  32. 32.
    Khandelwal, P. K, Heitman, P. W., Silversmitz, A J. and Wakefield, T. D., Appi Phys. Lett, 37 (1980) 779–81.CrossRefGoogle Scholar
  33. 33.
    Kleer, G. Richter, H., Prümmer, R. and Pfeiffer-Vollmar, H.-W., In: Keramische Komponenten für Fahrzeug-Gasturbinen III, Bunk, W., Böhmer, M. and Kißler, H. (eds), Berlin, Springer, 1984, pp. 487–512.Google Scholar
  34. 34.
    Kupperman, D. S., Sather, A, Lapinski, N. P., Sciammarella, C. and Yuhas, D., In: Review of progress in quantitative NDE1978, Thompson, D. O. (ed.), Air Force Materials Laboratory Report AFML-TR-78-205, January 1979, 214–27.Google Scholar
  35. 35.
    Knoll, G. F., Radiation detection and measurement, John Wiley, New York, 1979.Google Scholar
  36. 36.
    Kress, J. W. and Feldkamp, L. A, X-ray tomography applied to NDE of ceramics, ASME-Paper 83-GT-206, 1983.Google Scholar
  37. 37.
    Tittmann, B. R., Ahlberg, L., Evans, A G., Elsley, R. K. and Khuri-Yakub, B. T., 1976 IEEE Ultras. Symp. Proc. pp. 653–8.Google Scholar
  38. 38.
    Kino, G., Khuri-Yakub, B. T., Murakami, Y. and Yu, K. H., Proceedings Review of Progress in Quantitative NDE 1978, Thompson, D. O. (ed.), AFML-TR-78-205, 1979, pp. 242–5.Google Scholar
  39. 39.
    Chou, C. H., Khuri-Yakub, B. T., Kino, G. S. and Evans, A G., J. NDE, 1 (1980) 235–47.Google Scholar
  40. 40.
    Khuri-Yakub, B. T. and Kino, G. S, 1976 IEEE Ultras. Symp. Proc, pp. 564–6.Google Scholar
  41. 41.
    Goebbels, K, Reiter, H., Arnold, W. and Hirsekorn, S., In: Keramische Komponenten für Fahrzeug-Gasturbinen III, Bunk, W., Böhmer, M. and Kißler, H. (eds), Berlin, Springer, 1984, pp. 537–58.Google Scholar
  42. 42.
    Reiter, H, Becker, R. and Coen, G., IzfP-Res. Report 800121, 1980.Google Scholar
  43. 43.
    Rokhlin, S. I., Hefets, M. and Rosen, M., J. Appi. Phys, 52 (1981) 2847–51.CrossRefGoogle Scholar
  44. 44.
    Reiter, H., Arnold, W. and Goebbels, K, Proc. 2nd Intern. Colloq. Joining of Ceramics, Glass and Metal, Bad Nauheim, March 1985.Google Scholar
  45. 45.
    Roszhart, T. V., Holographic characterization of ceramics, TRW-Report AD 776454, Redondo Beach, CA, TRW, 1973.Google Scholar
  46. 46.
    Friedman, W. D., Review of Progress in Quantitative NDE, Plenum Press, New York, 1984.Google Scholar
  47. 47.
    Kupperman, D. S., Ellingson, W. A and Berger, H., Proc. NSF/JSPS US/ Japan Seminar on Structural Ceramics, 1984.Google Scholar
  48. 48.
    Graham, L. J. and Alers, G. A, Microstructural aspects of acoustic emission generation in ceramics. In: Fracture mechanics of ceramics, Vol. 1, Bradt, R. C., Hasselman, D. P. H. and Lange, F. F. (eds), New York, Plenum Press, 1984, 175–88.Google Scholar
  49. 49.
    Schuldies, J. J. Mater. Eval, 30 (1973) 209–13.Google Scholar
  50. 50.
    Gogotsi, G. A., Kuzmenko, V. A., Grishakov, S. V., Negovski, A. N. and Drozdov, A. V, Proc. 10th WCNDT, USSR Academy of Sciences, Moscow 1982, Paper 5–13.Google Scholar
  51. 51.
    Iwasaki, H. and Izumi, M., Jap. Soc. Mater. Sci, Japan (1981) 1044–50.Google Scholar
  52. 52.
    Moeller, H. H., Powers, T., Petrak, D. R. and Coulter, J. E., Proceedings Failure Mechanisms in High Performance Materials, National Bureau of Standards, Washington, May 1984.Google Scholar
  53. 53.
    Grellner, W., Henze, P. Schwetz, K. A and Lipp, A., Proceedings 3rd European Conference on NDT, Italian Society for NDT, Florence, Italy, October 1983, pp. 78–87.Google Scholar
  54. 54.
    Bahr, A J., Microwave techniques for NDE of ceramics. In: Review of progress in quantitative NDE 1977, Thompson, D. O. (ed.), AFML-TR-78-55, May 1978, pp. 245–50.Google Scholar
  55. 55.
    Pizzi, P., Analysis of microvoids in Si3N4 ceramics by small angle neutron scattering. Proc. Penn. State Conf, Pennsylvania State University, 1978, pp. 85–98.Google Scholar
  56. 56.
    Bonetti, E., Evangelista, E. and Gondi, P., In: Internal friction and ultrasonic attenuation in solids, Smith, C. C. (ed.), Oxford, Pergamon Press, 1980, pp. 401–5.Google Scholar
  57. 57.
    Khuri-Yakub, B. T., Shui, Y, Kino, G. S., Marshall, D. B. and Evans, A G. Review of Progress in Quantitative NDE, Vol. 3A, Thompson, D. O. and Chimenti, D. E. (eds), New York, Plenum Press, 1984, pp. 229–37.Google Scholar
  58. 58.
    Ouanezar, N., Rouby, D., Fleischmann, P. and Fantozzi, G., Sci. Ceram, 12 (1984) 563–8.Google Scholar
  59. 59.
    Richardson, J. M. and Evans, A G., J. NDE, 1 (1980) 37–52.Google Scholar
  60. 60.
    Proceedings Review of Progress in Quantitative NDE 1979, Thompson, D. O. and Thompson, R. B., AFWAL-TR-80-4078, July 1980, Session XIV: Failure Modes, Defect Characterization and Accept/Reject Criteria.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  1. 1.Tiede Rissprüfanlagen, GmbHEssingen bei AalenGermany

Personalised recommendations